--- language: - en license: mit tags: - chemistry - SMILES - retrosynthesis datasets: - ORD metrics: - accuracy --- # Model Card for ReactionT5v2-retrosynthesis This is a ReactionT5 pre-trained to predict the reactants of reactions and fine-tuned on USPOT_50k's train split. Base model before fine-tuning is [here](https://huggingface.co./sagawa/ReactionT5v2-retrosynthesis). ### Model Sources - **Repository:** https://github.com/sagawatatsuya/ReactionT5v2 - **Paper:** https://arxiv.org/abs/2311.06708 - **Demo:** https://huggingface.co./spaces/sagawa/ReactionT5_task_retrosynthesis ## Uses You can use this model for retrosynthesis prediction or fine-tune this model with your dataset. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sagawa/ReactionT5v2-retrosynthesis-USPTO_50k", return_tensors="pt") model = AutoModelForSeq2SeqLM.from_pretrained("sagawa/ReactionT5v2-retrosynthesis-USPTO_50k") inp = tokenizer('CCN(CC)CCNC(=S)NC1CCCc2cc(C)cnc21', return_tensors='pt') output = model.generate(**inp, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'CCN(CC)CCN=C=S.Cc1cnc2c(c1)CCCC2N' ``` ## Training Details ### Training Procedure We used the [USPTO_50k dataset](https://yzhang.hpc.nyu.edu/T5Chem/index.html) for model finetuning. The command used for training is the following. For more information, please refer to the paper and GitHub repository. ```python cd task_retrosynthesis python finetune.py \ --output_dir='t5' \ --epochs=20 \ --lr=2e-5 \ --batch_size=32 \ --input_max_len=150 \ --target_max_len=150 \ --weight_decay=0.01 \ --evaluation_strategy='epoch' \ --save_strategy='epoch' \ --logging_strategy='epoch' \ --save_total_limit=10 \ --train_data_path='../data/USPTO_50k/train.csv' \ --valid_data_path='../data/USPTO_50k/val.csv' \ --disable_tqdm \ --model_name_or_path='sagawa/ReactionT5v2-retrosynthesis' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO_50k | USPTO_50k | 37.4 | - | 52.4 | 57.0 | | Molecular Transformer| USPTO_50k | USPTO_50k | 43.5 | - | 60.5 | - | | SCROP | USPTO_50k | USPTO_50k | 43.7 | - | 60.0 | 65.2 | | T5Chem | USPTO_50k | USPTO_50k | 46.5 | - | 64.4 | 70.5 | | CompoundT5 | USPTO_50k | USPTO_50k | 44,2 | 55.2 | 61.4 | 67.3 | | [ReactionT5](https://huggingface.co./sagawa/ReactionT5v2-retrosynthesis) | - | USPTO_50k | 13.8 | 18.6 | 21.4 | 26.2 | | [ReactionT5 (This model)](https://huggingface.co./sagawa/ReactionT5v2-retrosynthesis-USPTO_50k) | USPTO_50k | USPTO_50k | 71.2 | 81.4 | 84.9 | 88.2 | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. ## Citation arxiv link: https://arxiv.org/abs/2311.06708 ``` @misc{sagawa2023reactiont5, title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data}, author={Tatsuya Sagawa and Ryosuke Kojima}, year={2023}, eprint={2311.06708}, archivePrefix={arXiv}, primaryClass={physics.chem-ph} } ```