sagawa commited on
Commit
c767555
1 Parent(s): 8ff4e54

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -22
README.md CHANGED
@@ -12,22 +12,17 @@ metrics:
12
  - r_squared
13
  ---
14
 
15
- # Model Card for ReactionT5-yield-prediction
16
-
17
- This is a ReactionT5 pre-trained to predict yields of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5-yield-prediction).
18
-
19
- ## Model Details
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
 
 
23
 
24
  ### Model Sources
25
 
26
  <!-- Provide the basic links for the model. -->
27
 
28
  - **Repository:** https://github.com/sagawatatsuya/ReactionT5
29
- - **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}}
30
- - **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5-yield-prediction
31
 
32
  ## Uses
33
 
@@ -35,7 +30,7 @@ This is a ReactionT5 pre-trained to predict yields of reactions. You can use the
35
 
36
  ## How to Get Started with the Model
37
 
38
- Download files and use the code below to get started with the model.
39
 
40
  ```python
41
  import torch
@@ -89,8 +84,8 @@ class ReactionT5Yield(PreTrainedModel):
89
  return output*100
90
 
91
 
92
- model = ReactionT5Yield.from_pretrained('sagawa/ReactionT5-yield-prediction')
93
- tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5-yield-prediction')
94
  inp = tokenizer(['REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'], return_tensors='pt')
95
  print(model(inp)) # tensor([[19.1666]], grad_fn=<MulBackward0>)
96
  ```
@@ -131,15 +126,17 @@ python train.py
131
  | Avg. Tests 1–4| 0.69 ± 0.104 | 0.596 ± 0.251 | 0.738 ± 0.122 | 0.785 ± 0.094 | 0.741 ± 0.126 | 0.900 ± 0.031 |
132
 
133
 
134
- ## Citation [optional]
135
 
136
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
137
-
138
-
139
- ## Model Card Authors [optional]
140
-
141
- {{ model_card_authors | default("[More Information Needed]", true)}}
142
-
143
- ## Model Card Contact
144
-
145
- {{ model_card_contact | default("[More Information Needed]", true)}}
 
 
 
12
  - r_squared
13
  ---
14
 
15
+ # Model Card for ReactionT5v1-yield
 
 
 
 
 
 
16
 
17
+ This is a ReactionT5 pre-trained to predict yields of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5_task_yield).
18
 
19
  ### Model Sources
20
 
21
  <!-- Provide the basic links for the model. -->
22
 
23
  - **Repository:** https://github.com/sagawatatsuya/ReactionT5
24
+ - **Paper:** https://arxiv.org/abs/2311.06708
25
+ - **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5_task_yield
26
 
27
  ## Uses
28
 
 
30
 
31
  ## How to Get Started with the Model
32
 
33
+ Use the code below to get started with the model.
34
 
35
  ```python
36
  import torch
 
84
  return output*100
85
 
86
 
87
+ model = ReactionT5Yield.from_pretrained('sagawa/ReactionT5v1-yield')
88
+ tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5v1-yield')
89
  inp = tokenizer(['REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'], return_tensors='pt')
90
  print(model(inp)) # tensor([[19.1666]], grad_fn=<MulBackward0>)
91
  ```
 
126
  | Avg. Tests 1–4| 0.69 ± 0.104 | 0.596 ± 0.251 | 0.738 ± 0.122 | 0.785 ± 0.094 | 0.741 ± 0.126 | 0.900 ± 0.031 |
127
 
128
 
129
+ ## Citation
130
 
131
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
132
+ arxiv link: https://arxiv.org/abs/2311.06708
133
+ ```
134
+ @misc{sagawa2023reactiont5,
135
+ title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data},
136
+ author={Tatsuya Sagawa and Ryosuke Kojima},
137
+ year={2023},
138
+ eprint={2311.06708},
139
+ archivePrefix={arXiv},
140
+ primaryClass={physics.chem-ph}
141
+ }
142
+ ```