Update README.md
Browse files
README.md
CHANGED
@@ -12,22 +12,17 @@ metrics:
|
|
12 |
- r_squared
|
13 |
---
|
14 |
|
15 |
-
# Model Card for
|
16 |
-
|
17 |
-
This is a ReactionT5 pre-trained to predict yields of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5-yield-prediction).
|
18 |
-
|
19 |
-
## Model Details
|
20 |
-
|
21 |
-
<!-- Provide a longer summary of what this model is. -->
|
22 |
|
|
|
23 |
|
24 |
### Model Sources
|
25 |
|
26 |
<!-- Provide the basic links for the model. -->
|
27 |
|
28 |
- **Repository:** https://github.com/sagawatatsuya/ReactionT5
|
29 |
-
- **Paper
|
30 |
-
- **Demo:** https://huggingface.co/spaces/sagawa/
|
31 |
|
32 |
## Uses
|
33 |
|
@@ -35,7 +30,7 @@ This is a ReactionT5 pre-trained to predict yields of reactions. You can use the
|
|
35 |
|
36 |
## How to Get Started with the Model
|
37 |
|
38 |
-
|
39 |
|
40 |
```python
|
41 |
import torch
|
@@ -89,8 +84,8 @@ class ReactionT5Yield(PreTrainedModel):
|
|
89 |
return output*100
|
90 |
|
91 |
|
92 |
-
model = ReactionT5Yield.from_pretrained('sagawa/
|
93 |
-
tokenizer = AutoTokenizer.from_pretrained('sagawa/
|
94 |
inp = tokenizer(['REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'], return_tensors='pt')
|
95 |
print(model(inp)) # tensor([[19.1666]], grad_fn=<MulBackward0>)
|
96 |
```
|
@@ -131,15 +126,17 @@ python train.py
|
|
131 |
| Avg. Tests 1–4| 0.69 ± 0.104 | 0.596 ± 0.251 | 0.738 ± 0.122 | 0.785 ± 0.094 | 0.741 ± 0.126 | 0.900 ± 0.031 |
|
132 |
|
133 |
|
134 |
-
## Citation
|
135 |
|
136 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
{
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
{
|
|
|
|
|
|
12 |
- r_squared
|
13 |
---
|
14 |
|
15 |
+
# Model Card for ReactionT5v1-yield
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
This is a ReactionT5 pre-trained to predict yields of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/ReactionT5_task_yield).
|
18 |
|
19 |
### Model Sources
|
20 |
|
21 |
<!-- Provide the basic links for the model. -->
|
22 |
|
23 |
- **Repository:** https://github.com/sagawatatsuya/ReactionT5
|
24 |
+
- **Paper:** https://arxiv.org/abs/2311.06708
|
25 |
+
- **Demo:** https://huggingface.co/spaces/sagawa/ReactionT5_task_yield
|
26 |
|
27 |
## Uses
|
28 |
|
|
|
30 |
|
31 |
## How to Get Started with the Model
|
32 |
|
33 |
+
Use the code below to get started with the model.
|
34 |
|
35 |
```python
|
36 |
import torch
|
|
|
84 |
return output*100
|
85 |
|
86 |
|
87 |
+
model = ReactionT5Yield.from_pretrained('sagawa/ReactionT5v1-yield')
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5v1-yield')
|
89 |
inp = tokenizer(['REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'], return_tensors='pt')
|
90 |
print(model(inp)) # tensor([[19.1666]], grad_fn=<MulBackward0>)
|
91 |
```
|
|
|
126 |
| Avg. Tests 1–4| 0.69 ± 0.104 | 0.596 ± 0.251 | 0.738 ± 0.122 | 0.785 ± 0.094 | 0.741 ± 0.126 | 0.900 ± 0.031 |
|
127 |
|
128 |
|
129 |
+
## Citation
|
130 |
|
131 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
132 |
+
arxiv link: https://arxiv.org/abs/2311.06708
|
133 |
+
```
|
134 |
+
@misc{sagawa2023reactiont5,
|
135 |
+
title={ReactionT5: a large-scale pre-trained model towards application of limited reaction data},
|
136 |
+
author={Tatsuya Sagawa and Ryosuke Kojima},
|
137 |
+
year={2023},
|
138 |
+
eprint={2311.06708},
|
139 |
+
archivePrefix={arXiv},
|
140 |
+
primaryClass={physics.chem-ph}
|
141 |
+
}
|
142 |
+
```
|