--- library_name: transformers license: mit --- # ContentVec The ContentVec model in safetensors format, compatible with HuggingFace Transformers. ## Uses To extract features, use the following code: ```python from transformers import AutoProcessor, HubertModel import librosa # Load the processor and model processor = AutoProcessor.from_pretrained("safe-models/ContentVec") hubert = HubertModel.from_pretrained("safe-models/ContentVec") # Read the audio audio, sr = librosa.load("test.wav", sr=16000) input_values = processor(audio, sampling_rate=sr, return_tensors="pt").input_values # Get the layer 12 output as the feature feats = hubert(input_values, output_hidden_states=True)["hidden_states"][12] print(f"{feats.shape=}") ```