added README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: pytorch
|
4 |
+
---
|
5 |
+
|
6 |
+
# xor
|
7 |
+
|
8 |
+
A multi-layer perceptron (MLP) that performs the XOR logical computation. It generates the following truth table:
|
9 |
+
|
10 |
+
| A | B | C |
|
11 |
+
| - | - | - |
|
12 |
+
| 0 | 0 | 0 |
|
13 |
+
| 0 | 1 | 1 |
|
14 |
+
| 1 | 0 | 1 |
|
15 |
+
| 1 | 1 | 0 |
|
16 |
+
|
17 |
+
It takes as input two column vectors of zeros and ones. It outputs a single column vector of zeros and ones.
|
18 |
+
|
19 |
+
Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/xor.ipynb
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
```
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
from huggingface_hub import PyTorchModelHubMixin
|
27 |
+
|
28 |
+
# Let's create two column vectors containing `0`s and `1`s.
|
29 |
+
batch = {'a': torch.tensor([[0.], [0.], [1.], [1.]]), 'b': torch.tensor([[0.], [1.], [0.], [1.]])}
|
30 |
+
|
31 |
+
class XOR(nn.Module, PyTorchModelHubMixin):
|
32 |
+
def __init__(self):
|
33 |
+
super().__init__()
|
34 |
+
self.layer0_weight = torch.tensor([[1., 1.], [1., 1.]])
|
35 |
+
self.layer0_bias = torch.tensor([-1.5, -0.5])
|
36 |
+
self.layer1_weight = torch.tensor([[-1.], [1.]])
|
37 |
+
self.layer1_bias = torch.tensor([-0.5])
|
38 |
+
|
39 |
+
def heaviside(self, x):
|
40 |
+
return (x >= 0).float()
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
inputs = torch.cat([x['a'], x['b']], dim=1)
|
44 |
+
out = self.heaviside(inputs @ self.layer0_weight + self.layer0_bias)
|
45 |
+
out = self.heaviside(out @ self.layer1_weight + self.layer1_bias)
|
46 |
+
return out
|
47 |
+
|
48 |
+
# Instantiate:
|
49 |
+
logical_xor = XOR.from_pretrained("sadhaklal/xor")
|
50 |
+
|
51 |
+
# Forward pass:
|
52 |
+
output = logical_xor(batch)
|
53 |
+
print(output)
|
54 |
+
```
|