sadhaklal commited on
Commit
795dc67
·
verified ·
1 Parent(s): a37ded3

added README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: pytorch
4
+ ---
5
+
6
+ # xor
7
+
8
+ A multi-layer perceptron (MLP) that performs the XOR logical computation. It generates the following truth table:
9
+
10
+ | A | B | C |
11
+ | - | - | - |
12
+ | 0 | 0 | 0 |
13
+ | 0 | 1 | 1 |
14
+ | 1 | 0 | 1 |
15
+ | 1 | 1 | 0 |
16
+
17
+ It takes as input two column vectors of zeros and ones. It outputs a single column vector of zeros and ones.
18
+
19
+ Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/xor.ipynb
20
+
21
+ ## Usage
22
+
23
+ ```
24
+ import torch
25
+ import torch.nn as nn
26
+ from huggingface_hub import PyTorchModelHubMixin
27
+
28
+ # Let's create two column vectors containing `0`s and `1`s.
29
+ batch = {'a': torch.tensor([[0.], [0.], [1.], [1.]]), 'b': torch.tensor([[0.], [1.], [0.], [1.]])}
30
+
31
+ class XOR(nn.Module, PyTorchModelHubMixin):
32
+ def __init__(self):
33
+ super().__init__()
34
+ self.layer0_weight = torch.tensor([[1., 1.], [1., 1.]])
35
+ self.layer0_bias = torch.tensor([-1.5, -0.5])
36
+ self.layer1_weight = torch.tensor([[-1.], [1.]])
37
+ self.layer1_bias = torch.tensor([-0.5])
38
+
39
+ def heaviside(self, x):
40
+ return (x >= 0).float()
41
+
42
+ def forward(self, x):
43
+ inputs = torch.cat([x['a'], x['b']], dim=1)
44
+ out = self.heaviside(inputs @ self.layer0_weight + self.layer0_bias)
45
+ out = self.heaviside(out @ self.layer1_weight + self.layer1_bias)
46
+ return out
47
+
48
+ # Instantiate:
49
+ logical_xor = XOR.from_pretrained("sadhaklal/xor")
50
+
51
+ # Forward pass:
52
+ output = logical_xor(batch)
53
+ print(output)
54
+ ```