saattrupdan
commited on
Commit
·
75ba5c2
1
Parent(s):
d6700e5
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: xlmr-base-texas-squad-es
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# xlmr-base-texas-squad-es
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.5504
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
+
- train_batch_size: 8
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 4
|
41 |
+
- total_train_batch_size: 32
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 3
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 2.0645 | 0.24 | 1000 | 1.7915 |
|
51 |
+
| 1.8458 | 0.47 | 2000 | 1.7873 |
|
52 |
+
| 1.8208 | 0.71 | 3000 | 1.6628 |
|
53 |
+
| 1.7743 | 0.95 | 4000 | 1.5684 |
|
54 |
+
| 1.5636 | 1.18 | 5000 | 1.5686 |
|
55 |
+
| 1.6017 | 1.42 | 6000 | 1.5484 |
|
56 |
+
| 1.6271 | 1.66 | 7000 | 1.5173 |
|
57 |
+
| 1.5975 | 1.89 | 8000 | 1.5209 |
|
58 |
+
| 1.477 | 2.13 | 9000 | 1.5766 |
|
59 |
+
| 1.4389 | 2.37 | 10000 | 1.5392 |
|
60 |
+
| 1.3389 | 2.6 | 11000 | 1.5298 |
|
61 |
+
| 1.437 | 2.84 | 12000 | 1.5504 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.12.2
|
67 |
+
- Pytorch 1.8.1+cu101
|
68 |
+
- Datasets 1.12.1
|
69 |
+
- Tokenizers 0.10.3
|