Create TES UPDATE TO THIS
Browse files- TES UPDATE TO THIS +144 -0
TES UPDATE TO THIS
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%%writefile handler.py
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
import base64
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoencoderKL, StableDiffusionXLControlNetPipeline, AutoPipelineForText2Image
|
7 |
+
import torch
|
8 |
+
from diffusers.utils import load_image
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
import controlnet_hinter
|
13 |
+
|
14 |
+
# ADDED AUTO PIPE
|
15 |
+
# set device
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
if device.type != 'cuda':
|
18 |
+
raise ValueError("need to run on GPU")
|
19 |
+
# set mixed precision dtype
|
20 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
21 |
+
|
22 |
+
# controlnet mapping for controlnet id and control hinter
|
23 |
+
CONTROLNET_MAPPING = {
|
24 |
+
"canny_edge": {
|
25 |
+
"model_id": "lllyasviel/sd-controlnet-canny",
|
26 |
+
"hinter": controlnet_hinter.hint_canny
|
27 |
+
},
|
28 |
+
"pose": {
|
29 |
+
"model_id": "lllyasviel/sd-controlnet-openpose",
|
30 |
+
"hinter": controlnet_hinter.hint_openpose
|
31 |
+
},
|
32 |
+
"depth": {
|
33 |
+
"model_id": "lllyasviel/sd-controlnet-depth",
|
34 |
+
"hinter": controlnet_hinter.hint_depth
|
35 |
+
},
|
36 |
+
"scribble": {
|
37 |
+
"model_id": "lllyasviel/sd-controlnet-scribble",
|
38 |
+
"hinter": controlnet_hinter.hint_scribble,
|
39 |
+
},
|
40 |
+
"segmentation": {
|
41 |
+
"model_id": "lllyasviel/sd-controlnet-seg",
|
42 |
+
"hinter": controlnet_hinter.hint_segmentation,
|
43 |
+
},
|
44 |
+
"normal": {
|
45 |
+
"model_id": "lllyasviel/sd-controlnet-normal",
|
46 |
+
"hinter": controlnet_hinter.hint_normal,
|
47 |
+
},
|
48 |
+
"hed": {
|
49 |
+
"model_id": "lllyasviel/sd-controlnet-hed",
|
50 |
+
"hinter": controlnet_hinter.hint_hed,
|
51 |
+
},
|
52 |
+
"hough": {
|
53 |
+
"model_id": "lllyasviel/sd-controlnet-mlsd",
|
54 |
+
"hinter": controlnet_hinter.hint_hough,
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
class EndpointHandler():
|
60 |
+
def __init__(self, path=""):
|
61 |
+
# define default controlnet id and load controlnet
|
62 |
+
self.control_type = "normal"
|
63 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"], torch_dtype=dtype).to(device)
|
64 |
+
|
65 |
+
# Load StableDiffusionControlNetPipeline
|
66 |
+
self.stable_diffusion_id = "stablediffusionapi/disney-pixar-cartoon"
|
67 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
68 |
+
controlnet=self.controlnet,
|
69 |
+
torch_dtype=dtype,
|
70 |
+
safety_checker=None).to(device)
|
71 |
+
|
72 |
+
# Define Generator with seed
|
73 |
+
# COMMENTED self.generator = torch.Generator(device="cpu").manual_seed(3)
|
74 |
+
|
75 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
76 |
+
"""
|
77 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
78 |
+
:return: A dictionary with `image` field contains image in base64.
|
79 |
+
"""
|
80 |
+
prompt = data.pop("inputs", None)
|
81 |
+
image = data.pop("image", None)
|
82 |
+
controlnet_type = data.pop("controlnet_type", None)
|
83 |
+
stablediffusion_id = data.pop("stablediffusionid", None) # Get the stablediffusionid from the request data
|
84 |
+
|
85 |
+
if stablediffusion_id is not None and stablediffusion_id != self.stable_diffusion_id:
|
86 |
+
# Change the Stable Diffusion model to the new model ID
|
87 |
+
self.stable_diffusion_id = stablediffusion_id
|
88 |
+
# Reinitialize the pipeline with the new model ID
|
89 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
90 |
+
self.stable_diffusion_id,
|
91 |
+
controlnet=self.controlnet,
|
92 |
+
torch_dtype=dtype,
|
93 |
+
safety_checker=None
|
94 |
+
).to(device)
|
95 |
+
|
96 |
+
# Check if neither prompt nor image is provided
|
97 |
+
if prompt is None and image is None:
|
98 |
+
return {"error": "Please provide a prompt and base64 encoded image."}
|
99 |
+
|
100 |
+
# Check if a new controlnet is provided
|
101 |
+
if controlnet_type is not None and controlnet_type != self.control_type:
|
102 |
+
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
|
103 |
+
self.control_type = controlnet_type
|
104 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
|
105 |
+
torch_dtype=dtype).to(device)
|
106 |
+
self.pipe.controlnet = self.controlnet
|
107 |
+
|
108 |
+
# hyperparameters
|
109 |
+
negative_prompt = data.pop("negative_prompt", None)
|
110 |
+
num_inference_steps = data.pop("num_inference_steps", 150)
|
111 |
+
guidance_scale = data.pop("guidance_scale", 5)
|
112 |
+
negative_prompt = data.pop("negative_prompt", None)
|
113 |
+
height = data.pop("height", None)
|
114 |
+
width = data.pop("width", None)
|
115 |
+
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
|
116 |
+
|
117 |
+
# process image
|
118 |
+
image = self.decode_base64_image(image)
|
119 |
+
control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
120 |
+
|
121 |
+
# run inference pipeline
|
122 |
+
out = self.pipe(
|
123 |
+
prompt=prompt,
|
124 |
+
negative_prompt=negative_prompt,
|
125 |
+
image=control_image,
|
126 |
+
num_inference_steps=num_inference_steps,
|
127 |
+
guidance_scale=guidance_scale,
|
128 |
+
num_images_per_prompt=1,
|
129 |
+
height=height,
|
130 |
+
width=width,
|
131 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
132 |
+
guess_mode=True,
|
133 |
+
)
|
134 |
+
|
135 |
+
# generator=self.generator COMMENTED from self.pipe
|
136 |
+
# return the first generated PIL image
|
137 |
+
return out.images[0]
|
138 |
+
|
139 |
+
# helper to decode input image
|
140 |
+
def decode_base64_image(self, image_string):
|
141 |
+
base64_image = base64.b64decode(image_string)
|
142 |
+
buffer = BytesIO(base64_image)
|
143 |
+
image = Image.open(buffer)
|
144 |
+
return image
|