ppo-LunarLander-v2 / config.json
sErial03's picture
[ADD]:Upload PPO LunarLander-v2 trained agent
bb40e98 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1211db1630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1211db16c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1211db1750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1211db17e0>", "_build": "<function ActorCriticPolicy._build at 0x7f1211db1870>", "forward": "<function ActorCriticPolicy.forward at 0x7f1211db1900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1211db1990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1211db1a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1211db1ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1211db1b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1211db1bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1211db1c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1211d34300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735469726344998260, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaeCjwpsF26CAmrug/YsbWgOYu5LOXDOQAAgD8AAIA/5vEFPUjXr7rnJLG75FSgtsSwH7raGRA2AACAPwAAgD8AEpY8j74zukHfHDszpt81xoePu+BDNroAAIA/AACAP2YK1jsp6By6G23Lu/Gbe7bCQBW5KNHkNQAAgD8AAIA/mqk6O3vOp7qQbPI6io6GtsUV0LlhFAu6AACAPwAAgD+a3VC93nXtPSbxGr0NgYC+BBnmvHZarz0AAAAAAAAAAJqTCz0a+CU/HOQXvTu5S75BUZ88xy6WPQAAAAAAAAAAzYjrvGv1kT9GqkS720s6vq1IFr2Dwec8AAAAAAAAAADNfIQ7xNC9PfWMDz2d7I6+SfA9PbikGL0AAAAAAAAAAI2gvb1cyyW6U+/nOuFiIDcGBa455N4ANgAAgD8AAIA/TW+BvaRwCrn3/C86vEJOtcVh6zohIUm0AACAPwAAgD8AcP07Hw3AuUjmWDjxuQY07wwbOZ3HercAAIA/AACAP4ADWz0pgHu6Qxfpu8D0eDhEleY5TWIeOAAAgD8AAIA/mlmSO4/CFLoCoz+76qO9Nz8jGbtWhPs5AACAPwAAgD8aogc9SCOLujqhw7tWLww4BVW7OiJVizoAAIA/AACAP5rKKD3D0Sq6AyJNvCdp0LaKB8I6ouNANgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFymvQnhKlKMAWyUTegDjAF0lEdAm3cfBvaURnV9lChoBkdAZRTwKBun/GgHTegDaAhHQJt7kl2NedF1fZQoaAZHQGMEniNsFdNoB03oA2gIR0Cbh0L4N7SidX2UKGgGR0BieCVD8cdYaAdN6ANoCEdAm4sMwtapxXV9lChoBkdAYBxSNwR5DGgHTegDaAhHQJuWiVX3g1p1fZQoaAZHQGLbwHiWE9NoB03oA2gIR0CbnH0J4SpSdX2UKGgGR0Bhm1nIyTIOaAdN6ANoCEdAm55KqbSZ0HV9lChoBkdAZwYt4A0bcWgHTegDaAhHQJue/0RODap1fZQoaAZHQGZ15bQkX1toB03oA2gIR0CboWZAprk9dX2UKGgGR0BjCXNu+AVgaAdN6ANoCEdAm6i3lS0jT3V9lChoBkdAZRiHrQgLZ2gHTegDaAhHQJupSapgkTp1fZQoaAZHQGUavzvqkdpoB03oA2gIR0CbqcDxLCemdX2UKGgGR0BgGMDEFW4maAdN6ANoCEdAm7JVOfukUXV9lChoBkdAYYML61stTWgHTegDaAhHQJuyf2Dg62h1fZQoaAZHQGHTON5t3wFoB03oA2gIR0Cbtb9mpVCHdX2UKGgGR0BlErBuXNTtaAdN6ANoCEdAm8vZ9qk/KXV9lChoBkdAXB6O801qFmgHTegDaAhHQJvMPWWhRIl1fZQoaAZHQGQr+hGpdbBoB03oA2gIR0Cbz+aJhvzfdX2UKGgGR0Bk/Wyu6mO3aAdN6ANoCEdAm9qVtCRfW3V9lChoBkdANPJSNwR5DGgHTRwBaAhHQJveSSQo1DV1fZQoaAZHQGBfieumrKhoB03oA2gIR0Cb3qrnDBM0dX2UKGgGR0BartroGIKuaAdN6ANoCEdAm+02Mju8b3V9lChoBkdAYZkBOpKjBWgHTegDaAhHQJvzAbS7Xg91fZQoaAZHQGV9Je3QUpNoB03oA2gIR0Cb9MxCpm29dX2UKGgGR0BfvWh/RVp9aAdN6ANoCEdAm/V85jpcHHV9lChoBkdAZR5FPSDyv2gHTegDaAhHQJv3vTb349J1fZQoaAZHQGSFTlkpZwJoB03oA2gIR0Cb/jR2bG3ndX2UKGgGR0BhuKkyk9EDaAdN6ANoCEdAm/6zslb/wXV9lChoBkdAYqh1UVBUrGgHTegDaAhHQJv/IDzRQad1fZQoaAZHQGIFuVPepGZoB03oA2gIR0CcBYJvYODrdX2UKGgGR0BdZwZOzposaAdN6ANoCEdAnAWfL5h0AHV9lChoBkdAYm/z9S/CZWgHTegDaAhHQJwHzUvwmVt1fZQoaAZHQEr4KgqVhThoB0vmaAhHQJwKYFLWZqp1fZQoaAZHQF9+9qUNayNoB03oA2gIR0CcC8A2Q4jsdX2UKGgGR0BbnRyS3b22aAdN6ANoCEdAnCM8brC3w3V9lChoBkdAY9dVH4Glh2gHTegDaAhHQJws5/I8yN51fZQoaAZHQGEKCm/FirloB03oA2gIR0CcMDWmxdIHdX2UKGgGR0Bg3169kBjnaAdN6ANoCEdAnDCILPUrkXV9lChoBkdAY/tZU1hsqWgHTegDaAhHQJw7H+0gKWt1fZQoaAZHQGIF+KbayrxoB03oA2gIR0CcQGyyD7IldX2UKGgGR0Bg/Obwz+FUaAdN6ANoCEdAnEIfFFUhm3V9lChoBkdAZHDyXlbNbGgHTegDaAhHQJxCwcDKYAt1fZQoaAZHQGTKD94u9OBoB03oA2gIR0CcRMuAqd6LdX2UKGgGR0BmYWNPxhDxaAdN6ANoCEdAnEz+yAxzrHV9lChoBkdAZxxUkv9LpWgHTegDaAhHQJxNoXZXdTJ1fZQoaAZHQGRBxUFSsKdoB03oA2gIR0CcVdpblijMdX2UKGgGR0BjtFbFCLMtaAdN6ANoCEdAnFX4/u9eyHV9lChoBkdAZyqasp5NXmgHTegDaAhHQJxYNjUd7v51fZQoaAZHQGcofmDDjzZoB03oA2gIR0CcWvksz2vjdX2UKGgGR0BmYOjwhGH6aAdN6ANoCEdAnFxV6zE74nV9lChoBkdAY9r3ljmSyWgHTegDaAhHQJxxWSq2jO91fZQoaAZHQFAu5MURFqloB0vraAhHQJx7Jx0dRzl1fZQoaAZHQGQR39itq59oB03oA2gIR0Cce1QWepXIdX2UKGgGR0BjjXmmtQsPaAdN6ANoCEdAnH9JfMOf/XV9lChoBkdAXLbR2KVIJGgHTegDaAhHQJx/rI0ZWJd1fZQoaAZHQGHUEYO2AoZoB03oA2gIR0CcivQiRnvldX2UKGgGR0BmT+u3c580aAdN6ANoCEdAnI+voaDPGHV9lChoBkdAZIViay8jA2gHTegDaAhHQJyROZRbbDd1fZQoaAZHQGXE13+uNgloB03oA2gIR0CckdJNj9XLdX2UKGgGR0BggKZnctXgaAdN6ANoCEdAnJPEyk9EC3V9lChoBkdAYdJ55Z8rqmgHTegDaAhHQJyaVbSqlxh1fZQoaAZHQGUgJKJ2t+1oB03oA2gIR0CcmshsZYPodX2UKGgGR0Bjsk1n/T9baAdN6ANoCEdAnKFRcRlH0HV9lChoBkdAZVWQT238XWgHTegDaAhHQJyhbmW+oLp1fZQoaAZHQGEQE8A7xNJoB03oA2gIR0Cco7BhhH9WdX2UKGgGR0BiBHl6qsEJaAdN6ANoCEdAnKaADA8B/HV9lChoBkdAYu/rwe/5+GgHTegDaAhHQJzAA40dilV1fZQoaAZHQAicdgfEGaBoB00PAWgIR0Ccx21n/T9bdX2UKGgGR0BcpCpBHCoCaAdN6ANoCEdAnMnXKKYRd3V9lChoBkdAYs2cinpB5WgHTegDaAhHQJzKBGx2SuB1fZQoaAZHQGLj9KmKqGVoB03oA2gIR0CczP850bLmdX2UKGgGR0BdYSsS00FbaAdN6ANoCEdAnM1Dh1klNXV9lChoBkdAZjw3CKrJbWgHTegDaAhHQJzWbFyaNMp1fZQoaAZHQGaCH09QoCxoB03oA2gIR0Cc236Lfk3kdX2UKGgGR0BkcAvcrRShaAdN6ANoCEdAnN0cifQKKHV9lChoBkdAYu5dmg8KX2gHTegDaAhHQJzdwGNaQmx1fZQoaAZHQGP5Ywh4dIZoB03oA2gIR0Cc3/SK3uuzdX2UKGgGR8ArJ5qM3qA0aAdLs2gIR0Cc5eAP/aQFdX2UKGgGR0BkucEPlMh6aAdN6ANoCEdAnOdy26TW5HV9lChoBkdAYUiHARChOGgHTegDaAhHQJzoBOclPad1fZQoaAZHQGAyrBj4HopoB03oA2gIR0Cc8D4xk/bCdX2UKGgGR0BiiQD/2kBTaAdN6ANoCEdAnPBbfcer/HV9lChoBkdAVpBtoBaLXWgHTegDaAhHQJz1Pv5P/Jh1fZQoaAZHQGDFOWSlnAZoB03oA2gIR0Cc+s4XGff5dX2UKGgGR0BnIJBcAzYVaAdN6ANoCEdAnRNvCVKPGXV9lChoBkdAZzuhIOH312gHTegDaAhHQJ0V5Dst03h1fZQoaAZHQGF4z+NtIkJoB03oA2gIR0CdFhJemelLdX2UKGgGR0BjXU1KoQ4CaAdN6ANoCEdAnRn4aP0ZnHV9lChoBkdAYKa9Pk7wKGgHTegDaAhHQJ0aW4hEBsB1fZQoaAZHQGDPZW7voeRoB03oA2gIR0CdJkkAxSHedX2UKGgGR0BiSM7EHdGiaAdN6ANoCEdAnS1OZgG8mXV9lChoBkdAZfOvalDWsmgHTegDaAhHQJ0uAemvW6N1fZQoaAZHQGURyC4BmwtoB03oA2gIR0CdMF0fYBeYdX2UKGgGR0Bi+nppvgm7aAdN6ANoCEdAnTckuDjBEnV9lChoBkdAYHSfDDTBqWgHTegDaAhHQJ04b90ihWZ1fZQoaAZHQFzAJSBK+SNoB03oA2gIR0CdOOT+vQnhdX2UKGgGR0Bi8VUKiO/+aAdN6ANoCEdAnT+XizcAR3V9lChoBkdAXbHs4T9KmWgHTegDaAhHQJ0/tBw++uh1fZQoaAZHQGStlpPAO8VoB03oA2gIR0CdRNXa8Hv+dX2UKGgGR0Bnz7cfvF3qaAdN6ANoCEdAnUqKjafzz3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}