File size: 1,460 Bytes
d0695fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: openrail
datasets:
- s3nh/alpaca-dolly-instruction-only-polish
language:
- pl
- en
library_name: transformers
pipeline_tag: text-generation
---


Finetuned state-space/mamba-3.8b using s3nh/polish_dolly instruction dataset. 

```

pip install mamba_ssm

```

is needed to properly infer on this model. 
More detail explanation soon. 


Axolotl config

```
base_model: state-spaces/mamba-2.8b
model_type: MambaLMHeadModel
tokenizer_type: AutoTokenizer
tokenizer_config: EleutherAI/gpt-neox-20b

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: s3nh/alpaca-dolly-instruction-only-polish
    type: alpaca
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./mamba

sequence_len: 1024
sample_packing: false
pad_to_sequence_len: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5

train_on_inputs: false
group_by_length: true

bf16: true
fp16: false
tf32: true
save_strategy: steps
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint: true
local_rank:
logging_steps: 100
xformers_attention:
flash_attention:

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch:
save_steps: 3000
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
tokens:
save_safetensors: False



```