rufimelo commited on
Commit
dad4465
·
1 Parent(s): a3ed2fa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -52
README.md CHANGED
@@ -1,17 +1,48 @@
 
1
  ---
 
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
-
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
 
 
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -25,9 +56,9 @@ Then you can use the model like this:
25
 
26
  ```python
27
  from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -35,23 +66,26 @@ print(embeddings)
35
 
36
 
37
  ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
 
40
  ```python
41
  from transformers import AutoTokenizer, AutoModel
42
  import torch
43
 
44
 
45
- def cls_pooling(model_output, attention_mask):
46
- return model_output[0][:,0]
 
 
 
47
 
48
 
49
  # Sentences we want sentence embeddings for
50
  sentences = ['This is an example sentence', 'Each sentence is converted']
51
 
52
  # Load model from HuggingFace Hub
53
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
54
- model = AutoModel.from_pretrained('{MODEL_NAME}')
55
 
56
  # Tokenize sentences
57
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -60,63 +94,62 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
60
  with torch.no_grad():
61
  model_output = model(**encoded_input)
62
 
63
- # Perform pooling. In this case, cls pooling.
64
- sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
65
 
66
  print("Sentence embeddings:")
67
  print(sentence_embeddings)
68
  ```
69
 
70
 
71
-
72
- ## Evaluation Results
73
-
74
- <!--- Describe how your model was evaluated -->
75
-
76
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
77
-
78
-
 
 
 
 
 
 
 
 
 
 
 
79
  ## Training
80
- The model was trained with the parameters:
81
 
82
- **DataLoader**:
83
 
84
- `torch.utils.data.dataloader.DataLoader` of length 2157 with parameters:
85
- ```
86
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
87
- ```
88
-
89
- **Loss**:
90
 
91
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
92
-
93
- Parameters of the fit()-Method:
94
- ```
95
- {
96
- "epochs": 5,
97
- "evaluation_steps": 0,
98
- "evaluator": "NoneType",
99
- "max_grad_norm": 1,
100
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
101
- "optimizer_params": {
102
- "lr": 1e-05
103
- },
104
- "scheduler": "WarmupLinear",
105
- "steps_per_epoch": null,
106
- "warmup_steps": 1079,
107
- "weight_decay": 0.01
108
- }
109
- ```
110
 
111
 
112
  ## Full Model Architecture
113
  ```
114
  SentenceTransformer(
115
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
116
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
117
  )
118
  ```
119
 
120
  ## Citing & Authors
121
 
122
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - pt
5
+ thumbnail: "Portuguese SBERT for the Legal Domain"
6
  pipeline_tag: sentence-similarity
7
  tags:
8
  - sentence-transformers
 
9
  - sentence-similarity
10
  - transformers
11
+ datasets:
12
+ - assin
13
+ - assin2
14
+ - stsb_multi_mt
15
+ - rufimelo/PortugueseLegalSentences-v1
16
+ widget:
17
+ - source_sentence: "O advogado apresentou as provas ao juíz."
18
+ sentences:
19
+ - "O juíz leu as provas."
20
+ - "O juíz leu o recurso."
21
+ - "O juíz atirou uma pedra."
22
+ example_title: "Example 1"
23
+ model-index:
24
+ - name: BERTimbau
25
+ results:
26
+ - task:
27
+ name: STS
28
+ type: STS
29
+ metrics:
30
+ - name: Pearson Correlation - assin Dataset
31
+ type: Pearson Correlation
32
+ value: xxxxx
33
+ - name: Pearson Correlation - assin2 Dataset
34
+ type: Pearson Correlation
35
+ value: xxxxx
36
+ - name: Pearson Correlation - stsb_multi_mt pt Dataset
37
+ type: Pearson Correlation
38
+ value: xxxxx
39
  ---
40
 
41
+ # rufimelo/Legal-BERTimbau-base-TSDAE-sts
 
 
42
 
43
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
44
+ rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
45
+ It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
46
 
47
  ## Usage (Sentence-Transformers)
48
 
 
56
 
57
  ```python
58
  from sentence_transformers import SentenceTransformer
59
+ sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
60
 
61
+ model = SentenceTransformer('rufimelo/Legal-BERTimbau-base-TSDAE-sts')
62
  embeddings = model.encode(sentences)
63
  print(embeddings)
64
  ```
 
66
 
67
 
68
  ## Usage (HuggingFace Transformers)
69
+
70
 
71
  ```python
72
  from transformers import AutoTokenizer, AutoModel
73
  import torch
74
 
75
 
76
+ #Mean Pooling - Take attention mask into account for correct averaging
77
+ def mean_pooling(model_output, attention_mask):
78
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
79
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
80
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
81
 
82
 
83
  # Sentences we want sentence embeddings for
84
  sentences = ['This is an example sentence', 'Each sentence is converted']
85
 
86
  # Load model from HuggingFace Hub
87
+ tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts')
88
+ model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts')
89
 
90
  # Tokenize sentences
91
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
94
  with torch.no_grad():
95
  model_output = model(**encoded_input)
96
 
97
+ # Perform pooling. In this case, mean pooling.
98
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
99
 
100
  print("Sentence embeddings:")
101
  print(sentence_embeddings)
102
  ```
103
 
104
 
105
+ ## Evaluation Results STS
106
+
107
+
108
+ | Model| Assin | Assin2|stsb_multi_mt pt| avg|
109
+ | ---------------------------------------- | ---------- | ---------- |---------- |---------- |
110
+ | Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462|
111
+ | Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886|
112
+ | Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307|
113
+ | Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369|
114
+ | Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715|
115
+ | Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142|
116
+ | Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863|
117
+ | Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**|
118
+ | ---------------------------------------- | ---------- |---------- |---------- |---------- |
119
+ | BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640|
120
+ | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245|
121
+ | ---------------------------------------- | ---------- |---------- |---------- |---------- |
122
+ | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429|
123
+ | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682|
124
  ## Training
 
125
 
126
+ rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on rufimelo/Legal-BERTimbau-base-TSDAE which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large.
127
 
128
+ rufimelo/Legal-BERTimbau-base-TSDAE was trained with TSDAE: 50000 cleaned documents (https://huggingface.co/datasets/rufimelo/PortugueseLegalSentences-v1)
129
+ 'lr': 1e-5
 
 
 
 
130
 
131
+ It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
 
134
  ## Full Model Architecture
135
  ```
136
  SentenceTransformer(
137
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
138
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
139
  )
140
  ```
141
 
142
  ## Citing & Authors
143
 
144
+ If you use this work, please cite BERTimbau's work:
145
+
146
+ ```bibtex
147
+ @inproceedings{souza2020bertimbau,
148
+ author = {F{\'a}bio Souza and
149
+ Rodrigo Nogueira and
150
+ Roberto Lotufo},
151
+ title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
152
+ booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
153
+ year = {2020}
154
+ }
155
+ ```