--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: pegasuscnn-dailymail_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.4804 --- # pegasuscnn-dailymail_billsum_model This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co./google/pegasus-cnn_dailymail) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6747 - Rouge1: 0.4804 - Rouge2: 0.2362 - Rougel: 0.3218 - Rougelsum: 0.3218 - Gen Len: 123.3669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 2.6227 | 1.0 | 198 | 1.9091 | 0.4289 | 0.1938 | 0.2945 | 0.2947 | 120.1855 | | 1.9714 | 2.0 | 396 | 1.8147 | 0.4517 | 0.2093 | 0.3059 | 0.3061 | 120.7742 | | 1.903 | 3.0 | 594 | 1.7646 | 0.4607 | 0.2207 | 0.3098 | 0.3102 | 121.121 | | 1.7973 | 4.0 | 792 | 1.7362 | 0.4719 | 0.2264 | 0.3179 | 0.3178 | 122.3185 | | 1.7868 | 5.0 | 990 | 1.7137 | 0.4779 | 0.2314 | 0.3191 | 0.3192 | 123.2379 | | 1.7457 | 6.0 | 1188 | 1.6958 | 0.4748 | 0.2296 | 0.3171 | 0.317 | 123.2056 | | 1.6687 | 7.0 | 1386 | 1.6873 | 0.4795 | 0.2352 | 0.3216 | 0.3216 | 123.2702 | | 1.6751 | 8.0 | 1584 | 1.6806 | 0.4835 | 0.2384 | 0.3248 | 0.3245 | 122.8266 | | 1.6564 | 9.0 | 1782 | 1.6758 | 0.4814 | 0.2359 | 0.3217 | 0.3216 | 123.2984 | | 1.6333 | 10.0 | 1980 | 1.6747 | 0.4804 | 0.2362 | 0.3218 | 0.3218 | 123.3669 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1