--- license: mit base_model: xlm-roberta-base tags: - generated_from_keras_callback model-index: - name: rubakha/xlm-roberta results: [] --- # rubakha/xlm-roberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1468 - Train Accuracy: 0.944 - Validation Loss: 0.1545 - Validation Accuracy: 0.9440 - Train Precision: 0.9458 - Train Recall: 0.944 - Train F1: 0.9436 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Precision | Train Recall | Train F1 | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:-----:| | 0.8384 | 0.923 | 0.2463 | 0.9230 | 0.9256 | 0.923 | 0.9221 | 0 | | 0.2072 | 0.936 | 0.1811 | 0.9360 | 0.9379 | 0.936 | 0.9356 | 1 | | 0.1468 | 0.944 | 0.1545 | 0.9440 | 0.9458 | 0.944 | 0.9436 | 2 | ### Framework versions - Transformers 4.38.2 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2