--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - renovation metrics: - accuracy model-index: - name: vit-base-renovation results: - task: name: Image Classification type: image-classification dataset: name: renovation type: renovation config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 --- # vit-base-renovation This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the renovation dataset. It achieves the following results on the evaluation set: - Loss: 1.4621 - Accuracy: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.382 | 0.2 | 25 | 1.1103 | 0.6073 | | 0.5741 | 0.4 | 50 | 1.0628 | 0.6210 | | 0.5589 | 0.6 | 75 | 1.0025 | 0.6667 | | 0.4074 | 0.81 | 100 | 1.1324 | 0.6073 | | 0.3581 | 1.01 | 125 | 1.1935 | 0.6438 | | 0.2618 | 1.21 | 150 | 1.8300 | 0.5023 | | 0.1299 | 1.41 | 175 | 1.2577 | 0.6301 | | 0.2562 | 1.61 | 200 | 1.0924 | 0.6895 | | 0.2573 | 1.81 | 225 | 1.1285 | 0.6849 | | 0.2471 | 2.02 | 250 | 1.3387 | 0.6256 | | 0.0618 | 2.22 | 275 | 1.2246 | 0.6667 | | 0.0658 | 2.42 | 300 | 1.4132 | 0.6347 | | 0.0592 | 2.62 | 325 | 1.4326 | 0.6530 | | 0.0464 | 2.82 | 350 | 1.2484 | 0.6849 | | 0.0567 | 3.02 | 375 | 1.5350 | 0.6347 | | 0.0269 | 3.23 | 400 | 1.4797 | 0.6667 | | 0.0239 | 3.43 | 425 | 1.4444 | 0.6530 | | 0.0184 | 3.63 | 450 | 1.4474 | 0.6575 | | 0.0286 | 3.83 | 475 | 1.4621 | 0.6667 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2