--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - renovation metrics: - accuracy model-index: - name: vit-base-beans-demo-v5 results: - task: name: Image Classification type: image-classification dataset: name: beans type: renovation config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6695059625212947 --- # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.8460 - Accuracy: 0.6695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0616 | 0.17 | 100 | 1.0267 | 0.5818 | | 0.9594 | 0.34 | 200 | 0.9468 | 0.6073 | | 1.1785 | 0.51 | 300 | 0.9976 | 0.5869 | | 0.865 | 0.68 | 400 | 0.9288 | 0.6388 | | 0.8494 | 0.85 | 500 | 0.8573 | 0.6516 | | 0.8151 | 1.02 | 600 | 0.8729 | 0.6397 | | 0.5787 | 1.19 | 700 | 0.9067 | 0.6448 | | 0.7768 | 1.36 | 800 | 0.8996 | 0.6533 | | 0.6098 | 1.53 | 900 | 0.8460 | 0.6695 | | 0.6251 | 1.7 | 1000 | 0.8610 | 0.6704 | | 0.7863 | 1.87 | 1100 | 0.8668 | 0.6431 | | 0.2595 | 2.04 | 1200 | 0.8725 | 0.6840 | | 0.2735 | 2.21 | 1300 | 0.9307 | 0.6746 | | 0.2429 | 2.39 | 1400 | 1.0958 | 0.6354 | | 0.3224 | 2.56 | 1500 | 1.0305 | 0.6687 | | 0.1602 | 2.73 | 1600 | 1.0072 | 0.6746 | | 0.2042 | 2.9 | 1700 | 1.0971 | 0.6789 | | 0.0604 | 3.07 | 1800 | 1.0817 | 0.6917 | | 0.0716 | 3.24 | 1900 | 1.1307 | 0.6925 | | 0.0822 | 3.41 | 2000 | 1.1827 | 0.6925 | | 0.0889 | 3.58 | 2100 | 1.2424 | 0.6934 | | 0.0855 | 3.75 | 2200 | 1.2667 | 0.6899 | | 0.0682 | 3.92 | 2300 | 1.2470 | 0.6951 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2