--- language: - et license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small et - Common Voice+FLEURS results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0+FLEURS type: mozilla-foundation/common_voice_11_0 config: et split: train args: et metrics: - name: Wer type: wer value: 42.48444526581655 --- # Whisper Small et - Common Voice+FLEURS This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0, FLEURS dataset. It achieves the following results on the evaluation set: - Loss: 0.8754 - Wer: 42.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0094 | 10.0 | 1000 | 0.7125 | 43.4085 | | 0.0024 | 20.01 | 2000 | 0.7960 | 42.1795 | | 0.0012 | 30.01 | 3000 | 0.8237 | 41.8961 | | 0.0006 | 40.02 | 4000 | 0.8627 | 41.7853 | | 0.0004 | 51.0 | 5000 | 0.8754 | 42.4844 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2