--- license: gemma library_name: peft tags: - trl - sft - generated_from_trainer - ipex - GPU Max 1100 - Intel(R) Data Center GPU Max 1100 datasets: - generator base_model: google/gemma-2b model-index: - name: gemma-finetuning results: [] --- # gemma-finetuning This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.1674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Hardware Intel(R) Data Center GPU Max 1100 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - training_steps: 593 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8606 | 0.82 | 100 | 2.5425 | | 2.4479 | 1.64 | 200 | 2.3304 | | 2.3077 | 2.46 | 300 | 2.2351 | | 2.2398 | 3.28 | 400 | 2.1914 | | 2.2083 | 4.1 | 500 | 2.1674 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.0.1a0+cxx11.abi - Datasets 2.18.0 - Tokenizers 0.15.2