File size: 1,937 Bytes
3f5c92d 54a4920 3f5c92d 54a4920 3f5c92d 54a4920 3f5c92d 54a4920 3f5c92d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-epochs5
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt14
type: wmt14
args: de-en
metrics:
- name: Bleu
type: bleu
value: 5.8913
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-en-epochs5
This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2040
- Bleu: 5.8913
- Gen Len: 17.5408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 188 | 2.3366 | 2.8075 | 17.8188 |
| No log | 2.0 | 376 | 2.2557 | 4.8765 | 17.626 |
| 2.6928 | 3.0 | 564 | 2.2246 | 5.5454 | 17.5534 |
| 2.6928 | 4.0 | 752 | 2.2086 | 5.8511 | 17.5461 |
| 2.6928 | 5.0 | 940 | 2.2040 | 5.8913 | 17.5408 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|