File size: 1,937 Bytes
3f5c92d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a4920
3f5c92d
 
 
 
 
 
 
 
 
54a4920
 
 
3f5c92d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a4920
 
3f5c92d
 
 
 
 
 
 
 
 
 
54a4920
 
 
 
 
3f5c92d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-epochs5
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: wmt14
      type: wmt14
      args: de-en
    metrics:
    - name: Bleu
      type: bleu
      value: 5.8913
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-de-en-epochs5

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2040
- Bleu: 5.8913
- Gen Len: 17.5408

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log        | 1.0   | 188  | 2.3366          | 2.8075 | 17.8188 |
| No log        | 2.0   | 376  | 2.2557          | 4.8765 | 17.626  |
| 2.6928        | 3.0   | 564  | 2.2246          | 5.5454 | 17.5534 |
| 2.6928        | 4.0   | 752  | 2.2086          | 5.8511 | 17.5461 |
| 2.6928        | 5.0   | 940  | 2.2040          | 5.8913 | 17.5408 |


### Framework versions

- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3