Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759 ------ EXAMPLE USAGE --- from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-1M') tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") prompt = "Once upon a time there was" input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate completion output = model.generate(input_ids, max_length = 1000, num_beams=1) # Decode the completion output_text = tokenizer.decode(output[0], skip_special_tokens=True) # Print the generated text print(output_text) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_roneneldan__TinyStories-1M) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.02 | | ARC (25-shot) | 23.46 | | HellaSwag (10-shot) | 25.23 | | MMLU (5-shot) | 24.57 | | TruthfulQA (0-shot) | 49.4 | | Winogrande (5-shot) | 52.17 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 0.32 |