--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-ner-silvanus results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: id split: validation args: id metrics: - name: Precision type: precision value: 0.969802244788883 - name: Recall type: recall value: 0.9789587267332075 - name: F1 type: f1 value: 0.9743589743589745 - name: Accuracy type: accuracy value: 0.9894519740718916 --- # xlm-roberta-large-ner-silvanus This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co./xlm-roberta-large) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.0686 - Precision: 0.9698 - Recall: 0.9790 - F1: 0.9744 - Accuracy: 0.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 427 | 0.0717 | 0.9367 | 0.9701 | 0.9531 | 0.9862 | | 0.0221 | 2.0 | 855 | 0.0715 | 0.9560 | 0.9733 | 0.9646 | 0.9880 | | 0.0113 | 3.0 | 1281 | 0.0686 | 0.9698 | 0.9790 | 0.9744 | 0.9895 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1