--- base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-Facial-Expression-Recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: None args: default metrics: - name: Accuracy type: accuracy value: 0.9148438153091649 license: apache-2.0 language: - en pipeline_tag: image-classification library_name: transformers --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co./motheecreator/vit-Facial-Expression-Recognition) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2606 - Accuracy: 0.9148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6309 | 0.3328 | 100 | 0.2618 | 0.9145 | | 0.6165 | 0.6656 | 200 | 0.2600 | 0.9150 | | 0.6283 | 0.9983 | 300 | 0.2659 | 0.9135 | | 0.6171 | 1.3311 | 400 | 0.2561 | 0.9174 | | 0.6112 | 1.6639 | 500 | 0.2606 | 0.9148 | | 0.6081 | 1.9967 | 600 | 0.2624 | 0.9137 | | 0.5885 | 2.3295 | 700 | 0.2671 | 0.9113 | | 0.5975 | 2.6622 | 800 | 0.2572 | 0.9156 | | 0.6067 | 2.9950 | 900 | 0.2683 | 0.9116 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1