--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-05-bs-2-maxep-10 results: [] --- # bart-abs-1509-0313-lr-3e-05-bs-2-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co./sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0180 - Rouge/rouge1: 0.4724 - Rouge/rouge2: 0.2094 - Rouge/rougel: 0.3964 - Rouge/rougelsum: 0.3976 - Bertscore/bertscore-precision: 0.8964 - Bertscore/bertscore-recall: 0.8932 - Bertscore/bertscore-f1: 0.8947 - Meteor: 0.4217 - Gen Len: 36.8818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.6813 | 1.0 | 434 | 2.4588 | 0.4636 | 0.2101 | 0.3907 | 0.3921 | 0.8975 | 0.8904 | 0.8937 | 0.4099 | 35.0727 | | 0.6702 | 2.0 | 868 | 2.5377 | 0.4448 | 0.1862 | 0.3725 | 0.3735 | 0.8942 | 0.8887 | 0.8913 | 0.3825 | 35.7273 | | 0.4591 | 3.0 | 1302 | 2.8762 | 0.4533 | 0.1916 | 0.3767 | 0.3778 | 0.8961 | 0.8897 | 0.8928 | 0.3911 | 35.2091 | | 0.3165 | 4.0 | 1736 | 3.2129 | 0.4519 | 0.1976 | 0.3803 | 0.3806 | 0.8936 | 0.891 | 0.8922 | 0.4023 | 37.6364 | | 0.2222 | 5.0 | 2170 | 3.4971 | 0.47 | 0.2049 | 0.392 | 0.3924 | 0.8959 | 0.8926 | 0.8941 | 0.4107 | 36.5545 | | 0.1596 | 6.0 | 2604 | 3.6405 | 0.4607 | 0.2101 | 0.3853 | 0.3879 | 0.8943 | 0.8908 | 0.8924 | 0.4021 | 37.2273 | | 0.1166 | 7.0 | 3038 | 3.7827 | 0.4759 | 0.2191 | 0.4086 | 0.4106 | 0.8988 | 0.8928 | 0.8956 | 0.4173 | 35.5727 | | 0.0891 | 8.0 | 3472 | 3.9388 | 0.4677 | 0.2047 | 0.3905 | 0.3925 | 0.8933 | 0.8927 | 0.8929 | 0.417 | 38.7 | | 0.0695 | 9.0 | 3906 | 3.9583 | 0.4775 | 0.2116 | 0.4032 | 0.4051 | 0.8981 | 0.8931 | 0.8955 | 0.4228 | 36.3182 | | 0.0592 | 10.0 | 4340 | 4.0180 | 0.4724 | 0.2094 | 0.3964 | 0.3976 | 0.8964 | 0.8932 | 0.8947 | 0.4217 | 36.8818 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1