robertou2 commited on
Commit
d0948e7
·
1 Parent(s): 08945ad

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 208.67 +/- 41.69
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 286.33 +/- 13.08
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8db0f85f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8db0f8680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8db0f8710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8db0f87a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff8db0f8830>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8db0f88c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8db0f8950>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8db0f89e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8db0f8a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8db0f8b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8db0f8b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651681306.4587274, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqP972gPlI/y5RmPDea0r4YRJC9QyrLPQAAAAAAAAAAbW02PtJokjxRfay7LTcjuj1bHD6/+SS7AACAPwAAgD/QHFK+OF2mPOEGCjvKNUS5R90rvoU5UToAAIA/AACAP6AvDT7Dszg7qjxLvCOGQbod/9I8w7MsuwAAgD8AAIA/M6MKvrhO0TqYNoC74pBOOKcLlrw6UJg6AACAPwAAgD/mNzK9g98EPa4ejD2W1W++K/zZvW1V8D0AAAAAAAAAAIAHAD/LSRq+QoeZu6yvcDlNrJa9ljIOtgAAgD8AAIA/5lYjvWAruT6CDsE8JDFrvsp9mr3qDBg9AAAAAAAAAACt7zK+hYe7PBOHXrvUOkc8ybFBvqL1izwAAAAAAAAAADNxTDy45te50q/oOia5NDXjb0C7fjYIugAAgD8AAIA/M/u/u6GStD887Be/apgOvFCu3ju1pgk+AAAAAAAAAACm6Fw+wyeQPvFpBD636zO+PY5ivKNqCr0AAAAAAAAAAID6FD1Up5k/moPiPNVh6r7yCKU8TUCqvQAAAAAAAAAAmt7jvSkMTbqel3s6gQuNNngnBrtMi5C5AACAPwAAgD9N+X49rjWHunPp6Lq3g3S1IMPeuss1BToAAIA/AACAP2LSj77Sy6+7nBi3ugZkrrd6ePk8KptyOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI176AXrgUXECUhpRSlIwBbJRN6AOMAXSUR0CAybbZezD5dX2UKGgGaAloD0MIRZ25h4QXYkCUhpRSlGgVTegDaBZHQIDPhUDMeOp1fZQoaAZoCWgPQwhSt7OvPLJeQJSGlFKUaBVN6ANoFkdAgOROl41P33V9lChoBmgJaA9DCCr/Wl657iHAlIaUUpRoFUvqaBZHQIDpbKFIuoR1fZQoaAZoCWgPQwi7Q4oBksdjQJSGlFKUaBVNzQJoFkdAgOmb1Iy0r3V9lChoBmgJaA9DCP6ZQXxgFFpAlIaUUpRoFU3oA2gWR0CA7G7rcCYDdX2UKGgGaAloD0MIA1slWBw+JECUhpRSlGgVTQIBaBZHQIDylnscABF1fZQoaAZoCWgPQwihoBSt3M1jQJSGlFKUaBVN6ANoFkdAgPcWphnanXV9lChoBmgJaA9DCPilft5UoF9AlIaUUpRoFU3oA2gWR0CA+Md4FA3UdX2UKGgGaAloD0MIAUwZOKBiW0CUhpRSlGgVTegDaBZHQID4z6vaDf51fZQoaAZoCWgPQwisi9toABNbQJSGlFKUaBVN6ANoFkdAgPm03XI2fnV9lChoBmgJaA9DCMIzoUli2SZAlIaUUpRoFUvUaBZHQIECWWUr08N1fZQoaAZoCWgPQwgw2A3bFh5cQJSGlFKUaBVN6ANoFkdAgQcTHsC1Z3V9lChoBmgJaA9DCPA2b5yUEGNAlIaUUpRoFU3oA2gWR0CBCy2FWXC1dX2UKGgGaAloD0MIxeV4BaIRXkCUhpRSlGgVTegDaBZHQIEMUlqrR0F1fZQoaAZoCWgPQwgZ/tMNFOJFQJSGlFKUaBVN6ANoFkdAgTyiMPz4DnV9lChoBmgJaA9DCFYsflPYYWZAlIaUUpRoFU2dAWgWR0CBPXd1MdtEdX2UKGgGaAloD0MI2jnNAu32RMCUhpRSlGgVS+hoFkdAgUWlsxfv4XV9lChoBmgJaA9DCIDUJk7uTWNAlIaUUpRoFU3oA2gWR0CBTBmyPdVOdX2UKGgGaAloD0MIeEfGavP1Q0CUhpRSlGgVTegDaBZHQIFO4HzH0bt1fZQoaAZoCWgPQwhnmNpSB3kWwJSGlFKUaBVLumgWR0CBUdTH80k4dX2UKGgGaAloD0MIVRaFXRREWkCUhpRSlGgVTegDaBZHQIFWPIXCTEB1fZQoaAZoCWgPQwjc8/xpoz1aQJSGlFKUaBVN6ANoFkdAgX+SMUAT7HV9lChoBmgJaA9DCDi9i/djnmNAlIaUUpRoFU3oA2gWR0CBh2yon8badX2UKGgGaAloD0MINKDejJrAX0CUhpRSlGgVTegDaBZHQIGNvUBnzxx1fZQoaAZoCWgPQwiobcMoiDxhQJSGlFKUaBVN6ANoFkdAgZIayjYZmHV9lChoBmgJaA9DCOqwwi2fcmNAlIaUUpRoFU3oA2gWR0CBk83eenQ6dX2UKGgGaAloD0MIb0bNV0kRZECUhpRSlGgVTegDaBZHQIGT1SjxkNF1fZQoaAZoCWgPQwgk06HTcwtiQJSGlFKUaBVN6ANoFkdAgZTLR8c+7nV9lChoBmgJaA9DCPmgZ7PqtV1AlIaUUpRoFU3oA2gWR0CBncRaouPFdX2UKGgGaAloD0MIr5P6srRbYkCUhpRSlGgVTegDaBZHQIGmcBQvYe11fZQoaAZoCWgPQwgjFFtB0+Y6QJSGlFKUaBVLtGgWR0CBpsJHiFTOdX2UKGgGaAloD0MIUtZvJqY0YUCUhpRSlGgVTegDaBZHQIGnjb5/LDB1fZQoaAZoCWgPQwjmkT8YeMxgQJSGlFKUaBVN6ANoFkdAgdhnVPN3XHV9lChoBmgJaA9DCD+MEB5tUV1AlIaUUpRoFU3oA2gWR0CB4N4L1EmZdX2UKGgGaAloD0MI83NDU/Z2YECUhpRSlGgVTegDaBZHQIHm2WfK6nR1fZQoaAZoCWgPQwhlcJS8OhVeQJSGlFKUaBVN6ANoFkdAgeluQ6p5vHV9lChoBmgJaA9DCPILryR56VpAlIaUUpRoFU3oA2gWR0CB7EOaOPvKdX2UKGgGaAloD0MIgpAsYAL8WECUhpRSlGgVTegDaBZHQIHwN/tpmEp1fZQoaAZoCWgPQwhHcY46Ojo6wJSGlFKUaBVL02gWR0CCB/xm03OwdX2UKGgGaAloD0MI4ue/B6+XakCUhpRSlGgVTVYCaBZHQIIPMx20Re11fZQoaAZoCWgPQwg8SiU8oR5cQJSGlFKUaBVN6ANoFkdAghhIgV45cXV9lChoBmgJaA9DCCAL0SFwS2JAlIaUUpRoFU3oA2gWR0CCH7eTmnwYdX2UKGgGaAloD0MIhpDz/j82PECUhpRSlGgVS8poFkdAgiJh9b5dnnV9lChoBmgJaA9DCLkzEwznQ1xAlIaUUpRoFU3oA2gWR0CCJZsdkrf+dX2UKGgGaAloD0MI6WD9n8NcCECUhpRSlGgVS7NoFkdAgiY5AQg9vHV9lChoBmgJaA9DCNL/ci1aUmNAlIaUUpRoFU3oA2gWR0CCKXXfZVXFdX2UKGgGaAloD0MI16VG6OdYYkCUhpRSlGgVTegDaBZHQIIq7EHdGiJ1fZQoaAZoCWgPQwj/Wl653nZgQJSGlFKUaBVN6ANoFkdAgivYgRsdk3V9lChoBmgJaA9DCGHij6LOfGFAlIaUUpRoFU3oA2gWR0CCNDVBlcyFdX2UKGgGaAloD0MIXiuhuyTuR0CUhpRSlGgVS61oFkdAgjSJ3os7MnV9lChoBmgJaA9DCLrcYKjDFlhAlIaUUpRoFU3oA2gWR0CCPIa1kUbldX2UKGgGaAloD0MI1HyVfOwcUECUhpRSlGgVS8RoFkdAgj0LVWjoIXV9lChoBmgJaA9DCHUdqilJSWJAlIaUUpRoFU3oA2gWR0CCPaLXtjTbdX2UKGgGaAloD0MIhv90AwU+CkCUhpRSlGgVS+NoFkdAgkFk6Lfk3nV9lChoBmgJaA9DCN2yQ/zDsj3AlIaUUpRoFUvpaBZHQIJC4BcRlH11fZQoaAZoCWgPQwh3ai43GKRcQJSGlFKUaBVN6ANoFkdAgkg+1a4c3nV9lChoBmgJaA9DCCPZI9QMzmBAlIaUUpRoFU3oA2gWR0CCdUruIAOsdX2UKGgGaAloD0MI1BBV+DO8GkCUhpRSlGgVS+VoFkdAgnjpWFN+LHV9lChoBmgJaA9DCAHg2LPndlxAlIaUUpRoFU3oA2gWR0CCesVh1DBudX2UKGgGaAloD0MId6IkJNKJYECUhpRSlGgVTVICaBZHQIJ8cExIre91fZQoaAZoCWgPQwjHuyNjtWJdQJSGlFKUaBVN6ANoFkdAgn0lRYRuj3V9lChoBmgJaA9DCK+ytikes2dAlIaUUpRoFU1dAWgWR0CCfSYQ8OkMdX2UKGgGaAloD0MIJO6x9KElYUCUhpRSlGgVTegDaBZHQIJ/RLPD50t1fZQoaAZoCWgPQwiCyY0iaz0bwJSGlFKUaBVL7mgWR0CCkOtL+PzWdX2UKGgGaAloD0MIfsUaLnLHIUCUhpRSlGgVS+RoFkdAgpJr9uP3jHV9lChoBmgJaA9DCOWbbW5MCzdAlIaUUpRoFUu4aBZHQIKmdU4rBj51fZQoaAZoCWgPQwjNzMzMzEdgQJSGlFKUaBVN6ANoFkdAgq3tNBWxQnV9lChoBmgJaA9DCPzfERWqjVtAlIaUUpRoFU3oA2gWR0CCs7RmbsnidX2UKGgGaAloD0MIf2q8dJMFaECUhpRSlGgVTegDaBZHQIK0Sp3os7N1fZQoaAZoCWgPQwisG++OjH9eQJSGlFKUaBVN6ANoFkdAgsQzRYzSC3V9lChoBmgJaA9DCMfa39kepTRAlIaUUpRoFUvjaBZHQILOOm+Cbtt1fZQoaAZoCWgPQwi5GW7A51ZgQJSGlFKUaBVN6ANoFkdAgs6n4oJAuHV9lChoBmgJaA9DCP93RIXqmGBAlIaUUpRoFU3oA2gWR0CCz1SR8twrdX2UKGgGaAloD0MIFoVdFL2AYECUhpRSlGgVTegDaBZHQILTjOcDr7h1fZQoaAZoCWgPQwiRR3AjZedbQJSGlFKUaBVN6ANoFkdAgtUUVSGahHV9lChoBmgJaA9DCDP+fcaFS15AlIaUUpRoFU3oA2gWR0CC2n5fMOf/dX2UKGgGaAloD0MI8UdRZ+7hOkCUhpRSlGgVS9poFkdAgtw/rSmZVnV9lChoBmgJaA9DCGqme53UDV3AlIaUUpRoFU0IAmgWR0CDBzZjhDPXdX2UKGgGaAloD0MIxOxl22l3ZECUhpRSlGgVTegDaBZHQIMHtDneSB91fZQoaAZoCWgPQwh716AvvctGwJSGlFKUaBVLymgWR0CDCObutwJgdX2UKGgGaAloD0MIPpP98zRPXUCUhpRSlGgVTegDaBZHQIMK5r8BMi91fZQoaAZoCWgPQwhLr83GSlw0QJSGlFKUaBVL0mgWR0CDDaajN6gNdX2UKGgGaAloD0MI8DDtm/trDMCUhpRSlGgVS/poFkdAgw2+v6j323V9lChoBmgJaA9DCGhbzTrjTmNAlIaUUpRoFU3oA2gWR0CDDgPwuuifdX2UKGgGaAloD0MIXyaKkDqDYkCUhpRSlGgVTegDaBZHQIMOloL5RCR1fZQoaAZoCWgPQwh8e9egL8ZhQJSGlFKUaBVN6ANoFkdAgxCPVurIYHV9lChoBmgJaA9DCLq/ety3Ei1AlIaUUpRoFUvQaBZHQIMZLNwBHTZ1fZQoaAZoCWgPQwiIf9jSo/tPQJSGlFKUaBVL6WgWR0CDH0S00FbFdX2UKGgGaAloD0MIUKbR5OKpY0CUhpRSlGgVTegDaBZHQIMjT63y7PJ1fZQoaAZoCWgPQwg/rDdqhWkdQJSGlFKUaBVL9GgWR0CDJEjps41hdX2UKGgGaAloD0MIlialoNtlQUCUhpRSlGgVS6xoFkdAgzL9jG1hLHV9lChoBmgJaA9DCOhoVUu6z2RAlIaUUpRoFU3oA2gWR0CDP0VX3g1ndX2UKGgGaAloD0MIAYqRJXOXUkCUhpRSlGgVTegDaBZHQINGNnM+u/11fZQoaAZoCWgPQwgXf9sTJNZTQJSGlFKUaBVN6ANoFkdAg2MKQzUI9nV9lChoBmgJaA9DCN0Ii4o45TlAlIaUUpRoFUvyaBZHQINlr2L5ylx1fZQoaAZoCWgPQwh88NqljZplQJSGlFKUaBVN6ANoFkdAg2t3jdYW+HV9lChoBmgJaA9DCL1uERjrFGFAlIaUUpRoFU3oA2gWR0CDcoE12q1gdX2UKGgGaAloD0MInzws1Jq5XECUhpRSlGgVTegDaBZHQIN00IVuaWp1fZQoaAZoCWgPQwgrptJPuOJmQJSGlFKUaBVN6ANoFkdAg3rw2/BWP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff8db0f85f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff8db0f8680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff8db0f8710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff8db0f87a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff8db0f8830>", "forward": "<function ActorCriticPolicy.forward at 0x7ff8db0f88c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff8db0f8950>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff8db0f89e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff8db0f8a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff8db0f8b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff8db0f8b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"}, "verbose": 3, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651683474.96104, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLpjwM6Jk/0YPBPQKzN7/zJVU9U7GQPQAAAAAAAAAAALZEPK45rbq6r883GnDJMtfPkTr7HO62AACAPwAAgD/gN0S+qqKDPtkSAz+COLy+ENYqPhgKCD4AAAAAAAAAALNqL71SKry7lkM7PuUYl747sWA92rUtvwAAAAAAAIA/M8jJvB9Hv7tiHSg+GdC9OfQiLr1bZXM7AACAPwAAgD+NMii+g5YhP83jgj32PgS/GzVavmIOUz4AAAAAAAAAADNnebz4Hbo/wkJhvnmNRj6+xo08p7pJPQAAAAAAAAAAMzPtOa+pdT/PxhE8zHU1v1jnOT3aUJM9AAAAAAAAAADjDbQ+alMpP76KoL6xgyi/WTSOPtgskL4AAAAAAAAAAJoiDz2nsEg+YId0vu2ht76ZdOa9CaNMvQAAAAAAAAAAzXBTvUifqLo4zCKzLp36sK47iLhwFcMzAACAPwAAgD9A9NQ9z2AUPT0qMb5CkaO+oYgevYS9ubwAAAAAAAAAAJqijzxI46a6pXp0ueIoX7QjKJe6jnWMOAAAgD8AAIA/S3yLvh1cPj+66nG9B2stv1B7Dr/GR2U9AAAAAAAAAACaMOY8XGFIPi5HA73KocS+eMsaPENbl7wAAAAAAAAAAI0R871IEcS6knIgu00NFrj0Pg47hiREOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2UElrmNdckCUhpRSlIwBbJRL04wBdJRHQKULzXEIgNh1fZQoaAZoCWgPQwgT1VsDm31yQJSGlFKUaBVLsWgWR0ClC9xPwd8zdX2UKGgGaAloD0MI/Io1XCSOckCUhpRSlGgVS9JoFkdApQxkNYr8SHV9lChoBmgJaA9DCGr5gav893NAlIaUUpRoFUu/aBZHQKUMboZhrnF1fZQoaAZoCWgPQwhaZDvfT4xxQJSGlFKUaBVL12gWR0ClDHmFBY3edX2UKGgGaAloD0MIUz9vKhIrckCUhpRSlGgVS6ZoFkdApQyAxagVXXV9lChoBmgJaA9DCFTHKqVnQ3FAlIaUUpRoFUvDaBZHQKUMj3EAHVx1fZQoaAZoCWgPQwgUJoxmJQFzQJSGlFKUaBVLyWgWR0ClDKsA3kxRdX2UKGgGaAloD0MIDhMNUnA0ckCUhpRSlGgVS9BoFkdApQy+vUz9CXV9lChoBmgJaA9DCC6rsBmgM3BAlIaUUpRoFUu+aBZHQKUM6gfU4Jh1fZQoaAZoCWgPQwink2x1ubRyQJSGlFKUaBVLyGgWR0ClDPzI/7iydX2UKGgGaAloD0MIcy7FVeX8c0CUhpRSlGgVS99oFkdApQ1rhFVktnV9lChoBmgJaA9DCFiNJawNrG1AlIaUUpRoFUu5aBZHQKUNhn7Hhjx1fZQoaAZoCWgPQwjqswOuq/hzQJSGlFKUaBVL2WgWR0ClDfy5Zr57dX2UKGgGaAloD0MIy6Da4ET4cUCUhpRSlGgVS8BoFkdApQ46WmgrY3V9lChoBmgJaA9DCE6zQLuD+nBAlIaUUpRoFUvVaBZHQKUOOsKb8WN1fZQoaAZoCWgPQwihEWxcv05yQJSGlFKUaBVLyGgWR0ClDkbJwKjSdX2UKGgGaAloD0MI4UIewU1RckCUhpRSlGgVS6poFkdApQ52PxQSBnV9lChoBmgJaA9DCCJvufrxNXBAlIaUUpRoFUu+aBZHQKUOwUM5OrR1fZQoaAZoCWgPQwgz/n3GBchuQJSGlFKUaBVLyGgWR0ClDvYIBzV+dX2UKGgGaAloD0MIINJvX4eeb0CUhpRSlGgVS8ZoFkdApQ7/BguyvHV9lChoBmgJaA9DCEypS8ZxxHBAlIaUUpRoFUvBaBZHQKUPDIS13MZ1fZQoaAZoCWgPQwgHsp5aff1zQJSGlFKUaBVL3GgWR0ClDy0q6OHWdX2UKGgGaAloD0MIrHR3nc2bckCUhpRSlGgVS9toFkdApQ9v2ugYg3V9lChoBmgJaA9DCBfTTPd6HXFAlIaUUpRoFUuqaBZHQKUPrGPxQSB1fZQoaAZoCWgPQwi9qUiF8W9wQJSGlFKUaBVL5GgWR0ClD9PLHMlkdX2UKGgGaAloD0MICTiEKjW4c0CUhpRSlGgVS+xoFkdApQ/bAk9lmXV9lChoBmgJaA9DCP4KmSvDaXFAlIaUUpRoFUvQaBZHQKUQEwdsBQx1fZQoaAZoCWgPQwh4nKIj+WtwQJSGlFKUaBVLrWgWR0ClEDEEC/47dX2UKGgGaAloD0MIVcA9z58Cc0CUhpRSlGgVS79oFkdApRClOVPepHV9lChoBmgJaA9DCIielElNvHJAlIaUUpRoFUvFaBZHQKUQuRDkU9J1fZQoaAZoCWgPQwjd0mpInOZyQJSGlFKUaBVLuWgWR0ClENAHVwxWdX2UKGgGaAloD0MIwXKEDOSfcUCUhpRSlGgVS7VoFkdApRFO5+Ytx3V9lChoBmgJaA9DCB13SgfrOHNAlIaUUpRoFUvSaBZHQKURdid8Rcx1fZQoaAZoCWgPQwh0RL5LKR9zQJSGlFKUaBVL0GgWR0ClEb+Pq9oOdX2UKGgGaAloD0MIjnbc8DuNcUCUhpRSlGgVS8loFkdApRHNUGVzIXV9lChoBmgJaA9DCJbnwd0ZpXFAlIaUUpRoFUveaBZHQKUR2x59mYl1fZQoaAZoCWgPQwjQ8jy4O7hxQJSGlFKUaBVLvGgWR0ClEe22gFotdX2UKGgGaAloD0MICcTr+kUxcUCUhpRSlGgVS8VoFkdApRJI+nqFAXV9lChoBmgJaA9DCFMEOL2LrGZAlIaUUpRoFU3oA2gWR0ClEleirT6SdX2UKGgGaAloD0MIK98zEuEZdECUhpRSlGgVS8BoFkdApRJdY4hllXV9lChoBmgJaA9DCNGVCFT/cnJAlIaUUpRoFUvDaBZHQKUSbKODJ2d1fZQoaAZoCWgPQwjElh5NdaZxQJSGlFKUaBVL3GgWR0ClEwr8JlasdX2UKGgGaAloD0MIY3rCEg+Cc0CUhpRSlGgVS+poFkdApRMaXMQmNXV9lChoBmgJaA9DCOIgIcpXbXNAlIaUUpRoFUu5aBZHQKUTIidJ8OV1fZQoaAZoCWgPQwiA9E2axqVxQJSGlFKUaBVLzGgWR0ClE0t6w+t9dX2UKGgGaAloD0MIVAJiEq6kcUCUhpRSlGgVS8FoFkdApRNRAWzninV9lChoBmgJaA9DCD1+b9Nfp3FAlIaUUpRoFUuqaBZHQKUTefra/RF1fZQoaAZoCWgPQwiOzCN/MPlzQJSGlFKUaBVLvmgWR0ClE9hddE9ddX2UKGgGaAloD0MIiJ//HnxtcUCUhpRSlGgVS6xoFkdApRPiuIRAbHV9lChoBmgJaA9DCNKKbyi8qHFAlIaUUpRoFUuxaBZHQKUT/oAXEZR1fZQoaAZoCWgPQwjl02Nbxg5yQJSGlFKUaBVLsWgWR0ClFIFrl/6PdX2UKGgGaAloD0MIZi0FpP2Pc0CUhpRSlGgVS95oFkdApRSa5NGmUHV9lChoBmgJaA9DCKDFUiTfY3NAlIaUUpRoFUu3aBZHQKUUnSpBHCp1fZQoaAZoCWgPQwh0X85s18dxQJSGlFKUaBVLt2gWR0ClFK0ZeiSJdX2UKGgGaAloD0MI2sU0031AckCUhpRSlGgVS99oFkdApRSv4VRDTnV9lChoBmgJaA9DCM1c4PJY3HFAlIaUUpRoFUvUaBZHQKUU42Yv38J1fZQoaAZoCWgPQwi5jnHFxR1CQJSGlFKUaBVLaGgWR0ClFSqyWzF/dX2UKGgGaAloD0MIw/UoXI9Lb0CUhpRSlGgVS7NoFkdApRVK6J66a3V9lChoBmgJaA9DCFK2SNqNXHNAlIaUUpRoFUvPaBZHQKUVsIgNgBt1fZQoaAZoCWgPQwhnutdJvXRyQJSGlFKUaBVL2WgWR0ClFbsHjZL7dX2UKGgGaAloD0MI1lOrr26WcECUhpRSlGgVS89oFkdApRXZ5s0pE3V9lChoBmgJaA9DCAHbwYj9dXFAlIaUUpRoFUuvaBZHQKUWCjqOcUd1fZQoaAZoCWgPQwg6IAn79vtyQJSGlFKUaBVL4mgWR0ClFh2FN+LFdX2UKGgGaAloD0MIqDej5mtucECUhpRSlGgVS8RoFkdApRZvKQq7RXV9lChoBmgJaA9DCJJB7iIMtHNAlIaUUpRoFUvuaBZHQKUWbwe/5+J1fZQoaAZoCWgPQwhZp8r3TCVzQJSGlFKUaBVLtWgWR0ClFr/kWAPNdX2UKGgGaAloD0MIV+pZEEoLcECUhpRSlGgVS7JoFkdApRbjHfdhzHV9lChoBmgJaA9DCPSj4ZS5m3JAlIaUUpRoFUu/aBZHQKUXC2lVLjB1fZQoaAZoCWgPQwgktVAyudRuQJSGlFKUaBVLxmgWR0ClFxLYGt6pdX2UKGgGaAloD0MIUWuadxyZcUCUhpRSlGgVS9JoFkdApRc0v0yxiXV9lChoBmgJaA9DCHY3T3UILnNAlIaUUpRoFUvOaBZHQKUXboVVPvd1fZQoaAZoCWgPQwh0YDlCRlFxQJSGlFKUaBVLv2gWR0ClF4i8vmHQdX2UKGgGaAloD0MI7URJSKQccUCUhpRSlGgVS8doFkdApRgggPmPo3V9lChoBmgJaA9DCM7/q46c729AlIaUUpRoFUu8aBZHQKUYJ1oQFs51fZQoaAZoCWgPQwiu2cpLfg1xQJSGlFKUaBVLr2gWR0ClGD9Sde6adX2UKGgGaAloD0MI74/3qhX0b0CUhpRSlGgVS7ZoFkdApRhCbjLjgnV9lChoBmgJaA9DCCxEh8BR63NAlIaUUpRoFUvwaBZHQKUYQs5n14B1fZQoaAZoCWgPQwgAxciSuRFyQJSGlFKUaBVL2GgWR0ClGF8qe9SNdX2UKGgGaAloD0MIIuLmVHI5cUCUhpRSlGgVS7doFkdApRilA9mpVHV9lChoBmgJaA9DCEGd8ujGNXRAlIaUUpRoFUu9aBZHQKUYuEmICU51fZQoaAZoCWgPQwie6/twUJhwQJSGlFKUaBVLrmgWR0ClGPuBlMAWdX2UKGgGaAloD0MIwJMWLuurcECUhpRSlGgVS7VoFkdApRk8UZeiSXV9lChoBmgJaA9DCKgck8W9yHFAlIaUUpRoFUuwaBZHQKUZV0OmR/51fZQoaAZoCWgPQwiqukc2V6VyQJSGlFKUaBVL4GgWR0ClGXr0jC53dX2UKGgGaAloD0MIlbpkHKOacECUhpRSlGgVS7NoFkdApRm31DjR2XV9lChoBmgJaA9DCMrErYIYmnNAlIaUUpRoFUvraBZHQKUZ6snRb8p1fZQoaAZoCWgPQwjQudv10lZxQJSGlFKUaBVL2GgWR0ClGhLOZ9eAdX2UKGgGaAloD0MI7bsi+F9HckCUhpRSlGgVS7doFkdApRpfcN6PbXV9lChoBmgJaA9DCOZAD7XtQnJAlIaUUpRoFUuzaBZHQKUadMMZxaR1fZQoaAZoCWgPQwg1t0JYjelwQJSGlFKUaBVLw2gWR0ClGo2Kl54XdX2UKGgGaAloD0MIJlex+M0oc0CUhpRSlGgVS7JoFkdApRqRmqYJFHV9lChoBmgJaA9DCAn+t5KdVmBAlIaUUpRoFU3oA2gWR0ClGskn1FpgdX2UKGgGaAloD0MImrSpuocOckCUhpRSlGgVS9ZoFkdApRrj5uZTh3V9lChoBmgJaA9DCNo8DoN5t3FAlIaUUpRoFUu9aBZHQKUa/W4mTkh1fZQoaAZoCWgPQwgUXRd+8O9xQJSGlFKUaBVL0WgWR0ClG0aYVqN7dX2UKGgGaAloD0MIz/boDbfLcUCUhpRSlGgVS8doFkdApRtngxagVXV9lChoBmgJaA9DCAcI5ugxFnJAlIaUUpRoFUvKaBZHQKUbp336AOJ1fZQoaAZoCWgPQwhegehJGfZxQJSGlFKUaBVLzWgWR0ClG8e6Zpi7dX2UKGgGaAloD0MId5/jowVEc0CUhpRSlGgVS85oFkdApRvs3IdU83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 468, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-aterrizaje-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf74ed23f5b963c5dcb5e9708b0a00959cc6b31e8b674c4ade21023b26ef6812
3
- size 144016
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2205fcc79b511b6b7c5c8f6d0021b98741c1a078da0bfbee90b0df02c50a5561
3
+ size 143981
ppo-aterrizaje-v2/data CHANGED
@@ -18,7 +18,7 @@
18
  "__abstractmethods__": "frozenset()",
19
  "_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"
20
  },
21
- "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
  "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651681306.4587274,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,34 +56,34 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqP972gPlI/y5RmPDea0r4YRJC9QyrLPQAAAAAAAAAAbW02PtJokjxRfay7LTcjuj1bHD6/+SS7AACAPwAAgD/QHFK+OF2mPOEGCjvKNUS5R90rvoU5UToAAIA/AACAP6AvDT7Dszg7qjxLvCOGQbod/9I8w7MsuwAAgD8AAIA/M6MKvrhO0TqYNoC74pBOOKcLlrw6UJg6AACAPwAAgD/mNzK9g98EPa4ejD2W1W++K/zZvW1V8D0AAAAAAAAAAIAHAD/LSRq+QoeZu6yvcDlNrJa9ljIOtgAAgD8AAIA/5lYjvWAruT6CDsE8JDFrvsp9mr3qDBg9AAAAAAAAAACt7zK+hYe7PBOHXrvUOkc8ybFBvqL1izwAAAAAAAAAADNxTDy45te50q/oOia5NDXjb0C7fjYIugAAgD8AAIA/M/u/u6GStD887Be/apgOvFCu3ju1pgk+AAAAAAAAAACm6Fw+wyeQPvFpBD636zO+PY5ivKNqCr0AAAAAAAAAAID6FD1Up5k/moPiPNVh6r7yCKU8TUCqvQAAAAAAAAAAmt7jvSkMTbqel3s6gQuNNngnBrtMi5C5AACAPwAAgD9N+X49rjWHunPp6Lq3g3S1IMPeuss1BToAAIA/AACAP2LSj77Sy6+7nBi3ugZkrrd6ePk8KptyOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI176AXrgUXECUhpRSlIwBbJRN6AOMAXSUR0CAybbZezD5dX2UKGgGaAloD0MIRZ25h4QXYkCUhpRSlGgVTegDaBZHQIDPhUDMeOp1fZQoaAZoCWgPQwhSt7OvPLJeQJSGlFKUaBVN6ANoFkdAgOROl41P33V9lChoBmgJaA9DCCr/Wl657iHAlIaUUpRoFUvqaBZHQIDpbKFIuoR1fZQoaAZoCWgPQwi7Q4oBksdjQJSGlFKUaBVNzQJoFkdAgOmb1Iy0r3V9lChoBmgJaA9DCP6ZQXxgFFpAlIaUUpRoFU3oA2gWR0CA7G7rcCYDdX2UKGgGaAloD0MIA1slWBw+JECUhpRSlGgVTQIBaBZHQIDylnscABF1fZQoaAZoCWgPQwihoBSt3M1jQJSGlFKUaBVN6ANoFkdAgPcWphnanXV9lChoBmgJaA9DCPilft5UoF9AlIaUUpRoFU3oA2gWR0CA+Md4FA3UdX2UKGgGaAloD0MIAUwZOKBiW0CUhpRSlGgVTegDaBZHQID4z6vaDf51fZQoaAZoCWgPQwisi9toABNbQJSGlFKUaBVN6ANoFkdAgPm03XI2fnV9lChoBmgJaA9DCMIzoUli2SZAlIaUUpRoFUvUaBZHQIECWWUr08N1fZQoaAZoCWgPQwgw2A3bFh5cQJSGlFKUaBVN6ANoFkdAgQcTHsC1Z3V9lChoBmgJaA9DCPA2b5yUEGNAlIaUUpRoFU3oA2gWR0CBCy2FWXC1dX2UKGgGaAloD0MIxeV4BaIRXkCUhpRSlGgVTegDaBZHQIEMUlqrR0F1fZQoaAZoCWgPQwgZ/tMNFOJFQJSGlFKUaBVN6ANoFkdAgTyiMPz4DnV9lChoBmgJaA9DCFYsflPYYWZAlIaUUpRoFU2dAWgWR0CBPXd1MdtEdX2UKGgGaAloD0MI2jnNAu32RMCUhpRSlGgVS+hoFkdAgUWlsxfv4XV9lChoBmgJaA9DCIDUJk7uTWNAlIaUUpRoFU3oA2gWR0CBTBmyPdVOdX2UKGgGaAloD0MIeEfGavP1Q0CUhpRSlGgVTegDaBZHQIFO4HzH0bt1fZQoaAZoCWgPQwhnmNpSB3kWwJSGlFKUaBVLumgWR0CBUdTH80k4dX2UKGgGaAloD0MIVRaFXRREWkCUhpRSlGgVTegDaBZHQIFWPIXCTEB1fZQoaAZoCWgPQwjc8/xpoz1aQJSGlFKUaBVN6ANoFkdAgX+SMUAT7HV9lChoBmgJaA9DCDi9i/djnmNAlIaUUpRoFU3oA2gWR0CBh2yon8badX2UKGgGaAloD0MINKDejJrAX0CUhpRSlGgVTegDaBZHQIGNvUBnzxx1fZQoaAZoCWgPQwiobcMoiDxhQJSGlFKUaBVN6ANoFkdAgZIayjYZmHV9lChoBmgJaA9DCOqwwi2fcmNAlIaUUpRoFU3oA2gWR0CBk83eenQ6dX2UKGgGaAloD0MIb0bNV0kRZECUhpRSlGgVTegDaBZHQIGT1SjxkNF1fZQoaAZoCWgPQwgk06HTcwtiQJSGlFKUaBVN6ANoFkdAgZTLR8c+7nV9lChoBmgJaA9DCPmgZ7PqtV1AlIaUUpRoFU3oA2gWR0CBncRaouPFdX2UKGgGaAloD0MIr5P6srRbYkCUhpRSlGgVTegDaBZHQIGmcBQvYe11fZQoaAZoCWgPQwgjFFtB0+Y6QJSGlFKUaBVLtGgWR0CBpsJHiFTOdX2UKGgGaAloD0MIUtZvJqY0YUCUhpRSlGgVTegDaBZHQIGnjb5/LDB1fZQoaAZoCWgPQwjmkT8YeMxgQJSGlFKUaBVN6ANoFkdAgdhnVPN3XHV9lChoBmgJaA9DCD+MEB5tUV1AlIaUUpRoFU3oA2gWR0CB4N4L1EmZdX2UKGgGaAloD0MI83NDU/Z2YECUhpRSlGgVTegDaBZHQIHm2WfK6nR1fZQoaAZoCWgPQwhlcJS8OhVeQJSGlFKUaBVN6ANoFkdAgeluQ6p5vHV9lChoBmgJaA9DCPILryR56VpAlIaUUpRoFU3oA2gWR0CB7EOaOPvKdX2UKGgGaAloD0MIgpAsYAL8WECUhpRSlGgVTegDaBZHQIHwN/tpmEp1fZQoaAZoCWgPQwhHcY46Ojo6wJSGlFKUaBVL02gWR0CCB/xm03OwdX2UKGgGaAloD0MI4ue/B6+XakCUhpRSlGgVTVYCaBZHQIIPMx20Re11fZQoaAZoCWgPQwg8SiU8oR5cQJSGlFKUaBVN6ANoFkdAghhIgV45cXV9lChoBmgJaA9DCCAL0SFwS2JAlIaUUpRoFU3oA2gWR0CCH7eTmnwYdX2UKGgGaAloD0MIhpDz/j82PECUhpRSlGgVS8poFkdAgiJh9b5dnnV9lChoBmgJaA9DCLkzEwznQ1xAlIaUUpRoFU3oA2gWR0CCJZsdkrf+dX2UKGgGaAloD0MI6WD9n8NcCECUhpRSlGgVS7NoFkdAgiY5AQg9vHV9lChoBmgJaA9DCNL/ci1aUmNAlIaUUpRoFU3oA2gWR0CCKXXfZVXFdX2UKGgGaAloD0MI16VG6OdYYkCUhpRSlGgVTegDaBZHQIIq7EHdGiJ1fZQoaAZoCWgPQwj/Wl653nZgQJSGlFKUaBVN6ANoFkdAgivYgRsdk3V9lChoBmgJaA9DCGHij6LOfGFAlIaUUpRoFU3oA2gWR0CCNDVBlcyFdX2UKGgGaAloD0MIXiuhuyTuR0CUhpRSlGgVS61oFkdAgjSJ3os7MnV9lChoBmgJaA9DCLrcYKjDFlhAlIaUUpRoFU3oA2gWR0CCPIa1kUbldX2UKGgGaAloD0MI1HyVfOwcUECUhpRSlGgVS8RoFkdAgj0LVWjoIXV9lChoBmgJaA9DCHUdqilJSWJAlIaUUpRoFU3oA2gWR0CCPaLXtjTbdX2UKGgGaAloD0MIhv90AwU+CkCUhpRSlGgVS+NoFkdAgkFk6Lfk3nV9lChoBmgJaA9DCN2yQ/zDsj3AlIaUUpRoFUvpaBZHQIJC4BcRlH11fZQoaAZoCWgPQwh3ai43GKRcQJSGlFKUaBVN6ANoFkdAgkg+1a4c3nV9lChoBmgJaA9DCCPZI9QMzmBAlIaUUpRoFU3oA2gWR0CCdUruIAOsdX2UKGgGaAloD0MI1BBV+DO8GkCUhpRSlGgVS+VoFkdAgnjpWFN+LHV9lChoBmgJaA9DCAHg2LPndlxAlIaUUpRoFU3oA2gWR0CCesVh1DBudX2UKGgGaAloD0MId6IkJNKJYECUhpRSlGgVTVICaBZHQIJ8cExIre91fZQoaAZoCWgPQwjHuyNjtWJdQJSGlFKUaBVN6ANoFkdAgn0lRYRuj3V9lChoBmgJaA9DCK+ytikes2dAlIaUUpRoFU1dAWgWR0CCfSYQ8OkMdX2UKGgGaAloD0MIJO6x9KElYUCUhpRSlGgVTegDaBZHQIJ/RLPD50t1fZQoaAZoCWgPQwiCyY0iaz0bwJSGlFKUaBVL7mgWR0CCkOtL+PzWdX2UKGgGaAloD0MIfsUaLnLHIUCUhpRSlGgVS+RoFkdAgpJr9uP3jHV9lChoBmgJaA9DCOWbbW5MCzdAlIaUUpRoFUu4aBZHQIKmdU4rBj51fZQoaAZoCWgPQwjNzMzMzEdgQJSGlFKUaBVN6ANoFkdAgq3tNBWxQnV9lChoBmgJaA9DCPzfERWqjVtAlIaUUpRoFU3oA2gWR0CCs7RmbsnidX2UKGgGaAloD0MIf2q8dJMFaECUhpRSlGgVTegDaBZHQIK0Sp3os7N1fZQoaAZoCWgPQwisG++OjH9eQJSGlFKUaBVN6ANoFkdAgsQzRYzSC3V9lChoBmgJaA9DCMfa39kepTRAlIaUUpRoFUvjaBZHQILOOm+Cbtt1fZQoaAZoCWgPQwi5GW7A51ZgQJSGlFKUaBVN6ANoFkdAgs6n4oJAuHV9lChoBmgJaA9DCP93RIXqmGBAlIaUUpRoFU3oA2gWR0CCz1SR8twrdX2UKGgGaAloD0MIFoVdFL2AYECUhpRSlGgVTegDaBZHQILTjOcDr7h1fZQoaAZoCWgPQwiRR3AjZedbQJSGlFKUaBVN6ANoFkdAgtUUVSGahHV9lChoBmgJaA9DCDP+fcaFS15AlIaUUpRoFU3oA2gWR0CC2n5fMOf/dX2UKGgGaAloD0MI8UdRZ+7hOkCUhpRSlGgVS9poFkdAgtw/rSmZVnV9lChoBmgJaA9DCGqme53UDV3AlIaUUpRoFU0IAmgWR0CDBzZjhDPXdX2UKGgGaAloD0MIxOxl22l3ZECUhpRSlGgVTegDaBZHQIMHtDneSB91fZQoaAZoCWgPQwh716AvvctGwJSGlFKUaBVLymgWR0CDCObutwJgdX2UKGgGaAloD0MIPpP98zRPXUCUhpRSlGgVTegDaBZHQIMK5r8BMi91fZQoaAZoCWgPQwhLr83GSlw0QJSGlFKUaBVL0mgWR0CDDaajN6gNdX2UKGgGaAloD0MI8DDtm/trDMCUhpRSlGgVS/poFkdAgw2+v6j323V9lChoBmgJaA9DCGhbzTrjTmNAlIaUUpRoFU3oA2gWR0CDDgPwuuifdX2UKGgGaAloD0MIXyaKkDqDYkCUhpRSlGgVTegDaBZHQIMOloL5RCR1fZQoaAZoCWgPQwh8e9egL8ZhQJSGlFKUaBVN6ANoFkdAgxCPVurIYHV9lChoBmgJaA9DCLq/ety3Ei1AlIaUUpRoFUvQaBZHQIMZLNwBHTZ1fZQoaAZoCWgPQwiIf9jSo/tPQJSGlFKUaBVL6WgWR0CDH0S00FbFdX2UKGgGaAloD0MIUKbR5OKpY0CUhpRSlGgVTegDaBZHQIMjT63y7PJ1fZQoaAZoCWgPQwg/rDdqhWkdQJSGlFKUaBVL9GgWR0CDJEjps41hdX2UKGgGaAloD0MIlialoNtlQUCUhpRSlGgVS6xoFkdAgzL9jG1hLHV9lChoBmgJaA9DCOhoVUu6z2RAlIaUUpRoFU3oA2gWR0CDP0VX3g1ndX2UKGgGaAloD0MIAYqRJXOXUkCUhpRSlGgVTegDaBZHQINGNnM+u/11fZQoaAZoCWgPQwgXf9sTJNZTQJSGlFKUaBVN6ANoFkdAg2MKQzUI9nV9lChoBmgJaA9DCN0Ii4o45TlAlIaUUpRoFUvyaBZHQINlr2L5ylx1fZQoaAZoCWgPQwh88NqljZplQJSGlFKUaBVN6ANoFkdAg2t3jdYW+HV9lChoBmgJaA9DCL1uERjrFGFAlIaUUpRoFU3oA2gWR0CDcoE12q1gdX2UKGgGaAloD0MInzws1Jq5XECUhpRSlGgVTegDaBZHQIN00IVuaWp1fZQoaAZoCWgPQwgrptJPuOJmQJSGlFKUaBVN6ANoFkdAg3rw2/BWP3VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
- "n_steps": 1024,
80
- "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
18
  "__abstractmethods__": "frozenset()",
19
  "_abc_impl": "<_abc_data object at 0x7ff8db0c0900>"
20
  },
21
+ "verbose": 3,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 524288,
46
  "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651683474.96104,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPLpjwM6Jk/0YPBPQKzN7/zJVU9U7GQPQAAAAAAAAAAALZEPK45rbq6r883GnDJMtfPkTr7HO62AACAPwAAgD/gN0S+qqKDPtkSAz+COLy+ENYqPhgKCD4AAAAAAAAAALNqL71SKry7lkM7PuUYl747sWA92rUtvwAAAAAAAIA/M8jJvB9Hv7tiHSg+GdC9OfQiLr1bZXM7AACAPwAAgD+NMii+g5YhP83jgj32PgS/GzVavmIOUz4AAAAAAAAAADNnebz4Hbo/wkJhvnmNRj6+xo08p7pJPQAAAAAAAAAAMzPtOa+pdT/PxhE8zHU1v1jnOT3aUJM9AAAAAAAAAADjDbQ+alMpP76KoL6xgyi/WTSOPtgskL4AAAAAAAAAAJoiDz2nsEg+YId0vu2ht76ZdOa9CaNMvQAAAAAAAAAAzXBTvUifqLo4zCKzLp36sK47iLhwFcMzAACAPwAAgD9A9NQ9z2AUPT0qMb5CkaO+oYgevYS9ubwAAAAAAAAAAJqijzxI46a6pXp0ueIoX7QjKJe6jnWMOAAAgD8AAIA/S3yLvh1cPj+66nG9B2stv1B7Dr/GR2U9AAAAAAAAAACaMOY8XGFIPi5HA73KocS+eMsaPENbl7wAAAAAAAAAAI0R871IEcS6knIgu00NFrj0Pg47hiREOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2UElrmNdckCUhpRSlIwBbJRL04wBdJRHQKULzXEIgNh1fZQoaAZoCWgPQwgT1VsDm31yQJSGlFKUaBVLsWgWR0ClC9xPwd8zdX2UKGgGaAloD0MI/Io1XCSOckCUhpRSlGgVS9JoFkdApQxkNYr8SHV9lChoBmgJaA9DCGr5gav893NAlIaUUpRoFUu/aBZHQKUMboZhrnF1fZQoaAZoCWgPQwhaZDvfT4xxQJSGlFKUaBVL12gWR0ClDHmFBY3edX2UKGgGaAloD0MIUz9vKhIrckCUhpRSlGgVS6ZoFkdApQyAxagVXXV9lChoBmgJaA9DCFTHKqVnQ3FAlIaUUpRoFUvDaBZHQKUMj3EAHVx1fZQoaAZoCWgPQwgUJoxmJQFzQJSGlFKUaBVLyWgWR0ClDKsA3kxRdX2UKGgGaAloD0MIDhMNUnA0ckCUhpRSlGgVS9BoFkdApQy+vUz9CXV9lChoBmgJaA9DCC6rsBmgM3BAlIaUUpRoFUu+aBZHQKUM6gfU4Jh1fZQoaAZoCWgPQwink2x1ubRyQJSGlFKUaBVLyGgWR0ClDPzI/7iydX2UKGgGaAloD0MIcy7FVeX8c0CUhpRSlGgVS99oFkdApQ1rhFVktnV9lChoBmgJaA9DCFiNJawNrG1AlIaUUpRoFUu5aBZHQKUNhn7Hhjx1fZQoaAZoCWgPQwjqswOuq/hzQJSGlFKUaBVL2WgWR0ClDfy5Zr57dX2UKGgGaAloD0MIy6Da4ET4cUCUhpRSlGgVS8BoFkdApQ46WmgrY3V9lChoBmgJaA9DCE6zQLuD+nBAlIaUUpRoFUvVaBZHQKUOOsKb8WN1fZQoaAZoCWgPQwihEWxcv05yQJSGlFKUaBVLyGgWR0ClDkbJwKjSdX2UKGgGaAloD0MI4UIewU1RckCUhpRSlGgVS6poFkdApQ52PxQSBnV9lChoBmgJaA9DCCJvufrxNXBAlIaUUpRoFUu+aBZHQKUOwUM5OrR1fZQoaAZoCWgPQwgz/n3GBchuQJSGlFKUaBVLyGgWR0ClDvYIBzV+dX2UKGgGaAloD0MIINJvX4eeb0CUhpRSlGgVS8ZoFkdApQ7/BguyvHV9lChoBmgJaA9DCEypS8ZxxHBAlIaUUpRoFUvBaBZHQKUPDIS13MZ1fZQoaAZoCWgPQwgHsp5aff1zQJSGlFKUaBVL3GgWR0ClDy0q6OHWdX2UKGgGaAloD0MIrHR3nc2bckCUhpRSlGgVS9toFkdApQ9v2ugYg3V9lChoBmgJaA9DCBfTTPd6HXFAlIaUUpRoFUuqaBZHQKUPrGPxQSB1fZQoaAZoCWgPQwi9qUiF8W9wQJSGlFKUaBVL5GgWR0ClD9PLHMlkdX2UKGgGaAloD0MICTiEKjW4c0CUhpRSlGgVS+xoFkdApQ/bAk9lmXV9lChoBmgJaA9DCP4KmSvDaXFAlIaUUpRoFUvQaBZHQKUQEwdsBQx1fZQoaAZoCWgPQwh4nKIj+WtwQJSGlFKUaBVLrWgWR0ClEDEEC/47dX2UKGgGaAloD0MIVcA9z58Cc0CUhpRSlGgVS79oFkdApRClOVPepHV9lChoBmgJaA9DCIielElNvHJAlIaUUpRoFUvFaBZHQKUQuRDkU9J1fZQoaAZoCWgPQwjd0mpInOZyQJSGlFKUaBVLuWgWR0ClENAHVwxWdX2UKGgGaAloD0MIwXKEDOSfcUCUhpRSlGgVS7VoFkdApRFO5+Ytx3V9lChoBmgJaA9DCB13SgfrOHNAlIaUUpRoFUvSaBZHQKURdid8Rcx1fZQoaAZoCWgPQwh0RL5LKR9zQJSGlFKUaBVL0GgWR0ClEb+Pq9oOdX2UKGgGaAloD0MIjnbc8DuNcUCUhpRSlGgVS8loFkdApRHNUGVzIXV9lChoBmgJaA9DCJbnwd0ZpXFAlIaUUpRoFUveaBZHQKUR2x59mYl1fZQoaAZoCWgPQwjQ8jy4O7hxQJSGlFKUaBVLvGgWR0ClEe22gFotdX2UKGgGaAloD0MICcTr+kUxcUCUhpRSlGgVS8VoFkdApRJI+nqFAXV9lChoBmgJaA9DCFMEOL2LrGZAlIaUUpRoFU3oA2gWR0ClEleirT6SdX2UKGgGaAloD0MIK98zEuEZdECUhpRSlGgVS8BoFkdApRJdY4hllXV9lChoBmgJaA9DCNGVCFT/cnJAlIaUUpRoFUvDaBZHQKUSbKODJ2d1fZQoaAZoCWgPQwjElh5NdaZxQJSGlFKUaBVL3GgWR0ClEwr8JlasdX2UKGgGaAloD0MIY3rCEg+Cc0CUhpRSlGgVS+poFkdApRMaXMQmNXV9lChoBmgJaA9DCOIgIcpXbXNAlIaUUpRoFUu5aBZHQKUTIidJ8OV1fZQoaAZoCWgPQwiA9E2axqVxQJSGlFKUaBVLzGgWR0ClE0t6w+t9dX2UKGgGaAloD0MIVAJiEq6kcUCUhpRSlGgVS8FoFkdApRNRAWzninV9lChoBmgJaA9DCD1+b9Nfp3FAlIaUUpRoFUuqaBZHQKUTefra/RF1fZQoaAZoCWgPQwiOzCN/MPlzQJSGlFKUaBVLvmgWR0ClE9hddE9ddX2UKGgGaAloD0MIiJ//HnxtcUCUhpRSlGgVS6xoFkdApRPiuIRAbHV9lChoBmgJaA9DCNKKbyi8qHFAlIaUUpRoFUuxaBZHQKUT/oAXEZR1fZQoaAZoCWgPQwjl02Nbxg5yQJSGlFKUaBVLsWgWR0ClFIFrl/6PdX2UKGgGaAloD0MIZi0FpP2Pc0CUhpRSlGgVS95oFkdApRSa5NGmUHV9lChoBmgJaA9DCKDFUiTfY3NAlIaUUpRoFUu3aBZHQKUUnSpBHCp1fZQoaAZoCWgPQwh0X85s18dxQJSGlFKUaBVLt2gWR0ClFK0ZeiSJdX2UKGgGaAloD0MI2sU0031AckCUhpRSlGgVS99oFkdApRSv4VRDTnV9lChoBmgJaA9DCM1c4PJY3HFAlIaUUpRoFUvUaBZHQKUU42Yv38J1fZQoaAZoCWgPQwi5jnHFxR1CQJSGlFKUaBVLaGgWR0ClFSqyWzF/dX2UKGgGaAloD0MIw/UoXI9Lb0CUhpRSlGgVS7NoFkdApRVK6J66a3V9lChoBmgJaA9DCFK2SNqNXHNAlIaUUpRoFUvPaBZHQKUVsIgNgBt1fZQoaAZoCWgPQwhnutdJvXRyQJSGlFKUaBVL2WgWR0ClFbsHjZL7dX2UKGgGaAloD0MI1lOrr26WcECUhpRSlGgVS89oFkdApRXZ5s0pE3V9lChoBmgJaA9DCAHbwYj9dXFAlIaUUpRoFUuvaBZHQKUWCjqOcUd1fZQoaAZoCWgPQwg6IAn79vtyQJSGlFKUaBVL4mgWR0ClFh2FN+LFdX2UKGgGaAloD0MIqDej5mtucECUhpRSlGgVS8RoFkdApRZvKQq7RXV9lChoBmgJaA9DCJJB7iIMtHNAlIaUUpRoFUvuaBZHQKUWbwe/5+J1fZQoaAZoCWgPQwhZp8r3TCVzQJSGlFKUaBVLtWgWR0ClFr/kWAPNdX2UKGgGaAloD0MIV+pZEEoLcECUhpRSlGgVS7JoFkdApRbjHfdhzHV9lChoBmgJaA9DCPSj4ZS5m3JAlIaUUpRoFUu/aBZHQKUXC2lVLjB1fZQoaAZoCWgPQwgktVAyudRuQJSGlFKUaBVLxmgWR0ClFxLYGt6pdX2UKGgGaAloD0MIUWuadxyZcUCUhpRSlGgVS9JoFkdApRc0v0yxiXV9lChoBmgJaA9DCHY3T3UILnNAlIaUUpRoFUvOaBZHQKUXboVVPvd1fZQoaAZoCWgPQwh0YDlCRlFxQJSGlFKUaBVLv2gWR0ClF4i8vmHQdX2UKGgGaAloD0MI7URJSKQccUCUhpRSlGgVS8doFkdApRgggPmPo3V9lChoBmgJaA9DCM7/q46c729AlIaUUpRoFUu8aBZHQKUYJ1oQFs51fZQoaAZoCWgPQwiu2cpLfg1xQJSGlFKUaBVLr2gWR0ClGD9Sde6adX2UKGgGaAloD0MI74/3qhX0b0CUhpRSlGgVS7ZoFkdApRhCbjLjgnV9lChoBmgJaA9DCCxEh8BR63NAlIaUUpRoFUvwaBZHQKUYQs5n14B1fZQoaAZoCWgPQwgAxciSuRFyQJSGlFKUaBVL2GgWR0ClGF8qe9SNdX2UKGgGaAloD0MIIuLmVHI5cUCUhpRSlGgVS7doFkdApRilA9mpVHV9lChoBmgJaA9DCEGd8ujGNXRAlIaUUpRoFUu9aBZHQKUYuEmICU51fZQoaAZoCWgPQwie6/twUJhwQJSGlFKUaBVLrmgWR0ClGPuBlMAWdX2UKGgGaAloD0MIwJMWLuurcECUhpRSlGgVS7VoFkdApRk8UZeiSXV9lChoBmgJaA9DCKgck8W9yHFAlIaUUpRoFUuwaBZHQKUZV0OmR/51fZQoaAZoCWgPQwiqukc2V6VyQJSGlFKUaBVL4GgWR0ClGXr0jC53dX2UKGgGaAloD0MIlbpkHKOacECUhpRSlGgVS7NoFkdApRm31DjR2XV9lChoBmgJaA9DCMrErYIYmnNAlIaUUpRoFUvraBZHQKUZ6snRb8p1fZQoaAZoCWgPQwjQudv10lZxQJSGlFKUaBVL2GgWR0ClGhLOZ9eAdX2UKGgGaAloD0MI7bsi+F9HckCUhpRSlGgVS7doFkdApRpfcN6PbXV9lChoBmgJaA9DCOZAD7XtQnJAlIaUUpRoFUuzaBZHQKUadMMZxaR1fZQoaAZoCWgPQwg1t0JYjelwQJSGlFKUaBVLw2gWR0ClGo2Kl54XdX2UKGgGaAloD0MIJlex+M0oc0CUhpRSlGgVS7JoFkdApRqRmqYJFHV9lChoBmgJaA9DCAn+t5KdVmBAlIaUUpRoFU3oA2gWR0ClGskn1FpgdX2UKGgGaAloD0MImrSpuocOckCUhpRSlGgVS9ZoFkdApRrj5uZTh3V9lChoBmgJaA9DCNo8DoN5t3FAlIaUUpRoFUu9aBZHQKUa/W4mTkh1fZQoaAZoCWgPQwgUXRd+8O9xQJSGlFKUaBVL0WgWR0ClG0aYVqN7dX2UKGgGaAloD0MIz/boDbfLcUCUhpRSlGgVS8doFkdApRtngxagVXV9lChoBmgJaA9DCAcI5ugxFnJAlIaUUpRoFUvKaBZHQKUbp336AOJ1fZQoaAZoCWgPQwhegehJGfZxQJSGlFKUaBVLzWgWR0ClG8e6Zpi7dX2UKGgGaAloD0MId5/jowVEc0CUhpRSlGgVS85oFkdApRvs3IdU83VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 468,
79
+ "n_steps": 2048,
80
+ "gamma": 0.995,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 6,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-aterrizaje-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b132f4f901263de122c8d38e7bf9bfc3d2d20e0fd27680d8181e63eff31e83f
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:695635b867e2da27d68a667436926a9bfda58e93241d532fbe34880cdf793be1
3
+ size 84893
ppo-aterrizaje-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60435229224229829c99a06cef1a3ff0467d2a4d8e58ef9c15eb8a0eda92ea3b
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3036e607f74b422142b31cfb65e295e7132781e674b24d965a6b4001a88fbc0
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32a09750d27b214df755a7e193e605613363fe3cd44bf1b4fe848df704f5589a
3
- size 249999
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f46e8cbea64d76574e6397624fec385d3a4b27268d5e2c62b03fa3862213a71
3
+ size 216371
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 208.67100061914743, "std_reward": 41.69375644116725, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:48:14.400683"}
 
1
+ {"mean_reward": 286.3307015058273, "std_reward": 13.08260348711586, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T17:05:17.064877"}