--- language: - en license: apache-2.0 library_name: transformers tags: - text-generation-inference - transformers - unsloth - mistral - trl - dpo - uncensored - roleplay - fine-tune base_model: MTSAIR/multi_verse_model datasets: - grimulkan/theory-of-mind - grimulkan/physical-reasoning - ResplendentAI/Luna_Alpaca - unalignment/toxic-dpo-v0.2 - kira/math-dpo - athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED model-index: - name: Pulsar_7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.71 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.99 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.72 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 69.28 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.06 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.65 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rmdhirr/Pulsar_7B name: Open LLM Leaderboard --- # 💫 Pulsar_7B Pulsar_7B is a fine-tune of [MTSAIR/multi_verse_model](https://huggingface.co./MTSAIR/multi_verse_model), trained on these datasets: - grimulkan/theory-of-mind - grimulkan/physical-reasoning - ResplendentAI/Luna_Alpaca - unalignment/toxic-dpo-v0.2 - kira/math-dpo - athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED ## Quantizations Thanks to mradermacher, static GGUF quants are available [here](https://huggingface.co./mradermacher/Pulsar_7B-GGUF). ## Formatting Pulsar_7B works well with Alpaca, it's not a picky model when it comes to formatting. Mistral should be compatible too. The custom chat template from [MTSAIR/multi_verse_model](https://huggingface.co./MTSAIR/multi_verse_model) also performs well: ``` {% for message in messages %}{% if message['role'] == 'user' %}{{ '### Instruction:\n' + message['content'] + '\n### Response:\n' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% elif message['role'] == 'system' %}{{ '### System:\n' + message['content'] + '\n' }}{% endif %}{% endfor %} ``` --- This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_rmdhirr__Pulsar_7B) | Metric |Value| |---------------------------------|----:| |Avg. |74.23| |AI2 Reasoning Challenge (25-Shot)|69.71| |HellaSwag (10-Shot) |86.99| |MMLU (5-Shot) |63.72| |TruthfulQA (0-shot) |69.28| |Winogrande (5-shot) |84.06| |GSM8k (5-shot) |71.65|