--- language: - en license: apache-2.0 library_name: transformers tags: - merge - mergekit - lazymergekit - mistral - roleplay - ResplendentAI/Datura_7B - Epiculous/Mika-7B base_model: - ResplendentAI/Datura_7B - Epiculous/Mika-7B model-index: - name: Foxglove_7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.83 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.57 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.89 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 69.64 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.74 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 44.96 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B name: Open LLM Leaderboard --- image # 🌸 Foxglove_7B Foxglove is a well-rounded RP model. It is smart, does a great job of sticking to character card, and is proficient at following desired markdown. Foxglove_7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ResplendentAI/Datura_7B](https://huggingface.co./ResplendentAI/Datura_7B) * [Epiculous/Mika-7B](https://huggingface.co./Epiculous/Mika-7B) ## Quantizations Thanks to mradermacher, static GGUF quants are available [here](https://huggingface.co./mradermacher/Foxglove_7B-GGUF). ## Formatting/Preset Alpaca works best, but Mistral provides good outputs as well. ## Configuration ```yaml slices: - sources: - model: ResplendentAI/Datura_7B layer_range: [0, 32] - model: Epiculous/Mika-7B layer_range: [0, 32] merge_method: slerp base_model: ResplendentAI/Datura_7B parameters: t: - filter: self_attn value: [0, 0.7, 0.4, 0.6, 1] - filter: mlp value: [0.8, 0.5, 0.7, 0.3, 0] - value: 0.6 dtype: bfloat16 ``` ## Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "rmdhirr/Foxglove_7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_aridoverrun__Foxglove_7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.77| |AI2 Reasoning Challenge (25-Shot)|67.83| |HellaSwag (10-Shot) |86.57| |MMLU (5-Shot) |62.89| |TruthfulQA (0-shot) |69.64| |Winogrande (5-shot) |80.74| |GSM8k (5-shot) |44.96|