--- language: - de license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-large-v3 datasets: - rmacek/ORF-whisper-large-v3 metrics: - wer model-index: - name: Whisper ORF Bundeslaender results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ZIB2 Common Voice type: rmacek/ORF-whisper-large-v3 args: 'config: de, split: test' metrics: - type: wer value: 17.29558995956067 name: Wer --- # Whisper ORF Bundeslaender This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the ZIB2 Common Voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3878 - Wer: 17.2956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3943 | 1.7153 | 1000 | 0.4072 | 17.5540 | | 0.3431 | 3.4305 | 2000 | 0.3922 | 17.3458 | | 0.3961 | 5.1458 | 3000 | 0.3885 | 17.3506 | | 0.3548 | 6.8611 | 4000 | 0.3878 | 17.2956 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1