File size: 1,987 Bytes
2a36f59
4015253
 
 
 
 
 
 
 
 
 
 
 
2a36f59
 
4015253
 
2a36f59
4015253
2a36f59
4015253
 
 
 
 
 
 
 
 
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
2a36f59
4015253
 
 
 
 
 
 
 
 
 
 
2a36f59
4015253
2a36f59
4015253
 
 
 
2a36f59
 
4015253
2a36f59
4015253
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-clickbait
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classify-clickbait

This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0010
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
- Accuracy Label Clickbait: 1.0
- Accuracy Label Factual: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label Clickbait | Accuracy Label Factual |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------------------------:|:----------------------:|
| 0.1089        | 1.1628 | 100  | 0.0617          | 0.9884   | 0.9884 | 0.9884    | 0.9884 | 0.9828                   | 0.9941                 |
| 0.0118        | 2.3256 | 200  | 0.0093          | 0.9971   | 0.9971 | 0.9971    | 0.9971 | 0.9943                   | 1.0                    |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1