--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-try1 results: [] --- # whisper-try1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4609 - Wer: 0.4140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0744 | 14.2857 | 200 | 1.2271 | 0.3814 | | 0.0251 | 28.5714 | 400 | 1.2939 | 0.3907 | | 0.0088 | 42.8571 | 600 | 1.3904 | 0.4047 | | 0.004 | 57.1429 | 800 | 1.4430 | 0.4140 | | 0.0031 | 71.4286 | 1000 | 1.4609 | 0.4140 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1