--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 metrics: - accuracy - precision - recall model-index: - name: mistralai_compi_data results: [] --- # mistralai_compi_data This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4322 - Accuracy: 0.8761 - Precision: 0.8564 - Recall: 0.8995 - F1 score: 0.8774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 1.3663 | 0.2604 | 200 | 1.1150 | 0.7692 | 0.8851 | 0.6111 | 0.7230 | | 0.8905 | 0.5208 | 400 | 0.6190 | 0.8318 | 0.8487 | 0.8016 | 0.8245 | | 0.7007 | 0.7812 | 600 | 0.5719 | 0.8462 | 0.9140 | 0.7593 | 0.8295 | | 0.5215 | 1.0417 | 800 | 0.4315 | 0.8696 | 0.8819 | 0.8492 | 0.8652 | | 0.2955 | 1.3021 | 1000 | 0.6376 | 0.8592 | 0.8140 | 0.9259 | 0.8663 | | 0.3254 | 1.5625 | 1200 | 0.5735 | 0.8735 | 0.9607 | 0.7751 | 0.8580 | | 0.3075 | 1.8229 | 1400 | 0.4322 | 0.8761 | 0.8564 | 0.8995 | 0.8774 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1