--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B metrics: - accuracy - precision - recall model-index: - name: llama3-8B_less_data_for_fact_update results: [] --- # llama3-8B_less_data_for_fact_update This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7586 - Accuracy: 0.7733 - Precision: 0.8015 - Recall: 0.7267 - F1 score: 0.7622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.8492 | 0.5 | 200 | 0.8538 | 0.65 | 0.6923 | 0.54 | 0.6067 | | 0.7574 | 1.0 | 400 | 0.6427 | 0.7267 | 0.8036 | 0.6 | 0.6870 | | 0.5003 | 1.5 | 600 | 0.5917 | 0.73 | 0.7066 | 0.7867 | 0.7445 | | 0.4629 | 2.0 | 800 | 0.6470 | 0.7567 | 0.8235 | 0.6533 | 0.7286 | | 0.3114 | 2.5 | 1000 | 0.6980 | 0.6967 | 0.7438 | 0.6 | 0.6642 | | 0.3031 | 3.0 | 1200 | 0.6128 | 0.7567 | 0.8130 | 0.6667 | 0.7326 | | 0.1783 | 3.5 | 1400 | 0.7288 | 0.7667 | 0.8175 | 0.6867 | 0.7464 | | 0.1737 | 4.0 | 1600 | 0.7242 | 0.7533 | 0.7969 | 0.68 | 0.7338 | | 0.0924 | 4.5 | 1800 | 0.7214 | 0.7733 | 0.7808 | 0.76 | 0.7703 | | 0.0669 | 5.0 | 2000 | 0.7586 | 0.7733 | 0.8015 | 0.7267 | 0.7622 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1