--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B metrics: - accuracy - precision - recall model-index: - name: llama3-8B_MT results: [] --- # llama3-8B_MT This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6988 - Accuracy: 0.7817 - Precision: 0.7394 - Recall: 0.87 - F1 score: 0.7994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 score | Precision | Recall | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:--------:|:---------:|:------:|:---------------:| | 0.7787 | 0.5 | 200 | 0.7533 | 0.7605 | 0.7390 | 0.7833 | 0.6041 | | 0.5489 | 1.0 | 400 | 0.73 | 0.7484 | 0.7006 | 0.8033 | 0.5793 | | 0.3894 | 1.5 | 600 | 0.6433 | 0.7214 | 0.5919 | 0.9233 | 0.7408 | | 0.3638 | 2.0 | 800 | 0.7533 | 0.7817 | 0.7011 | 0.8833 | 0.5249 | | 0.2665 | 2.5 | 1000 | 0.4719 | 0.8 | 0.7744 | 0.8467 | 0.8089 | | 0.2587 | 3.0 | 1200 | 0.4709 | 0.7917 | 0.7660 | 0.84 | 0.8013 | | 0.1716 | 3.5 | 1400 | 0.4906 | 0.8083 | 0.7955 | 0.83 | 0.8124 | | 0.1672 | 4.0 | 1600 | 0.8441 | 0.7083 | 0.6478 | 0.9133 | 0.7580 | | 0.0866 | 4.5 | 1800 | 0.6659 | 0.7917 | 0.7522 | 0.87 | 0.8068 | | 0.0822 | 5.0 | 2000 | 0.6988 | 0.7817 | 0.7394 | 0.87 | 0.7994 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1