--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: flanT5_large_MT results: [] --- # flanT5_large_MT This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9444 - Accuracy: 0.815 - Precision: 0.8339 - Recall: 0.7867 - F1 score: 0.8096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 1.2742 | 0.3910 | 2500 | 1.6400 | 0.69 | 0.7096 | 0.6433 | 0.6748 | | 1.2294 | 0.7820 | 5000 | 0.9952 | 0.725 | 0.7872 | 0.6167 | 0.6916 | | 1.0532 | 1.1730 | 7500 | 1.1585 | 0.69 | 0.6875 | 0.6967 | 0.6921 | | 0.9314 | 1.5640 | 10000 | 0.8117 | 0.7417 | 0.7580 | 0.71 | 0.7332 | | 0.8698 | 1.9550 | 12500 | 0.7872 | 0.7367 | 0.7817 | 0.6567 | 0.7138 | | 0.7603 | 2.3459 | 15000 | 0.9449 | 0.77 | 0.7470 | 0.8167 | 0.7803 | | 0.7207 | 2.7369 | 17500 | 0.9339 | 0.7917 | 0.7850 | 0.8033 | 0.7941 | | 0.6447 | 3.1279 | 20000 | 1.0756 | 0.8017 | 0.8198 | 0.7733 | 0.7959 | | 0.5358 | 3.5189 | 22500 | 1.0722 | 0.79 | 0.7788 | 0.81 | 0.7941 | | 0.5169 | 3.9099 | 25000 | 1.0001 | 0.8067 | 0.8407 | 0.7567 | 0.7965 | | 0.4011 | 4.3009 | 27500 | 1.0915 | 0.805 | 0.8144 | 0.79 | 0.8020 | | 0.3177 | 4.6919 | 30000 | 1.2966 | 0.8083 | 0.8157 | 0.7967 | 0.8061 | | 0.2783 | 5.0829 | 32500 | 1.2640 | 0.8117 | 0.7913 | 0.8467 | 0.8180 | | 0.1352 | 5.4739 | 35000 | 1.3695 | 0.82 | 0.8333 | 0.8 | 0.8163 | | 0.2168 | 5.8649 | 37500 | 1.3541 | 0.8133 | 0.8287 | 0.79 | 0.8089 | | 0.1186 | 6.2559 | 40000 | 1.4063 | 0.8167 | 0.8276 | 0.8 | 0.8136 | | 0.1205 | 6.6469 | 42500 | 1.6920 | 0.8033 | 0.7993 | 0.81 | 0.8046 | | 0.0957 | 7.0378 | 45000 | 1.5681 | 0.815 | 0.8225 | 0.8033 | 0.8128 | | 0.0406 | 7.4288 | 47500 | 1.9015 | 0.8083 | 0.8269 | 0.78 | 0.8027 | | 0.0558 | 7.8198 | 50000 | 1.8359 | 0.8017 | 0.7967 | 0.81 | 0.8033 | | 0.0549 | 8.2108 | 52500 | 1.8649 | 0.8083 | 0.8201 | 0.79 | 0.8048 | | 0.0515 | 8.6018 | 55000 | 1.8556 | 0.8067 | 0.7949 | 0.8267 | 0.8105 | | 0.0378 | 8.9928 | 57500 | 1.9273 | 0.7983 | 0.7806 | 0.83 | 0.8045 | | 0.0182 | 9.3838 | 60000 | 1.9497 | 0.8133 | 0.8287 | 0.79 | 0.8089 | | 0.0264 | 9.7748 | 62500 | 1.9444 | 0.815 | 0.8339 | 0.7867 | 0.8096 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1