--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: flanT5_MT results: [] --- # flanT5_MT This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9144 - Accuracy: 0.7959 - Precision: 0.8188 - Recall: 0.76 - F1 score: 0.7883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 score | Precision | Recall | Validation Loss | |:-------------:|:------:|:-----:|:--------:|:--------:|:---------:|:------:|:---------------:| | 1.1594 | 0.2103 | 2500 | 0.7306 | 0.6914 | 0.8091 | 0.6035 | 1.1807 | | 0.956 | 0.4205 | 5000 | 0.78 | 0.7556 | 0.85 | 0.68 | 1.0125 | | 0.8973 | 0.6308 | 7500 | 1.2023 | 0.7529 | 0.8772 | 0.5882 | 0.7042 | | 0.9154 | 0.8410 | 10000 | 1.0591 | 0.7771 | 0.8458 | 0.6776 | 0.7524 | | 0.8148 | 1.0513 | 12500 | 1.1675 | 0.7753 | 0.8087 | 0.7212 | 0.7624 | | 0.6499 | 1.2616 | 15000 | 0.9862 | 0.8076 | 0.8501 | 0.7471 | 0.7952 | | 0.6059 | 1.4718 | 17500 | 1.0780 | 0.7659 | 0.7404 | 0.8188 | 0.7777 | | 0.5391 | 1.6821 | 20000 | 1.2307 | 0.7694 | 0.7928 | 0.7294 | 0.7598 | | 0.479 | 1.8923 | 22500 | 1.2428 | 0.7735 | 0.7675 | 0.7847 | 0.7760 | | 0.3085 | 2.1026 | 25000 | 1.3597 | 0.7676 | 0.7571 | 0.7882 | 0.7723 | | 0.226 | 2.3129 | 27500 | 1.6552 | 0.7776 | 0.7757 | 0.7812 | 0.7784 | | 0.2293 | 2.5231 | 30000 | 1.4472 | 0.7847 | 0.7909 | 0.7741 | 0.7824 | | 0.2201 | 2.7334 | 32500 | 1.3059 | 0.7982 | 0.7972 | 0.8 | 0.7986 | | 0.2119 | 2.9437 | 35000 | 1.6964 | 0.7882 | 0.7981 | 0.7718 | 0.7847 | | 0.087 | 3.1539 | 37500 | 1.9933 | 0.7818 | 0.7801 | 0.7847 | 0.7824 | | 0.102 | 3.3642 | 40000 | 1.6337 | 0.7859 | 0.7866 | 0.7847 | 0.7856 | | 0.0925 | 3.5744 | 42500 | 1.8106 | 0.7894 | 0.7808 | 0.8047 | 0.7926 | | 0.1071 | 3.7847 | 45000 | 1.6925 | 0.7865 | 0.7691 | 0.8188 | 0.7932 | | 0.077 | 3.9950 | 47500 | 1.8706 | 0.7929 | 0.8044 | 0.7741 | 0.7890 | | 0.036 | 4.2052 | 50000 | 2.0159 | 0.7865 | 0.7822 | 0.7941 | 0.7881 | | 0.0534 | 4.4155 | 52500 | 1.9290 | 0.7882 | 0.7862 | 0.7918 | 0.7890 | | 0.0516 | 4.6257 | 55000 | 1.9351 | 0.7959 | 0.8180 | 0.7612 | 0.7885 | | 0.0471 | 4.8360 | 57500 | 1.9144 | 0.7959 | 0.8188 | 0.76 | 0.7883 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1