File size: 1,931 Bytes
e4a3075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: Qwen/Qwen2-7B
metrics:
- accuracy
- precision
- recall
model-index:
- name: Qwen_less_data_SUPNT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Qwen_less_data_SUPNT

This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co./Qwen/Qwen2-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8747
- Accuracy: 0.7567
- Precision: 0.6860
- Recall: 0.9467
- F1 score: 0.7955

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| 0.6563        | 1.0   | 200  | 0.8186          | 0.7533   | 0.7209    | 0.8267 | 0.7702   |
| 0.3346        | 2.0   | 400  | 0.9649          | 0.7      | 0.6351    | 0.94   | 0.7581   |
| 0.2537        | 3.0   | 600  | 0.9052          | 0.7133   | 0.6468    | 0.94   | 0.7663   |
| 0.1608        | 4.0   | 800  | 1.0086          | 0.7167   | 0.6484    | 0.9467 | 0.7696   |
| 0.1159        | 5.0   | 1000 | 0.8747          | 0.7567   | 0.6860    | 0.9467 | 0.7955   |


### Framework versions

- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1