Text Generation
Transformers
PyTorch
Safetensors
Japanese
English
llama
Eval Results
text-generation-inference
File size: 10,112 Bytes
96d1690
 
 
 
c0d9843
96d1690
 
 
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a5128
 
c0d9843
25a5128
96d1690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff10861
96d1690
 
 
 
 
 
 
 
0a294b6
96d1690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fd5fa
ff10861
 
66fd5fa
 
ff10861
 
 
 
 
 
 
 
66fd5fa
 
 
96d1690
66fd5fa
96d1690
 
 
c0d9843
 
 
 
 
 
 
 
 
 
 
 
25a5128
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
language:
- ja
- en
license: llama2
datasets:
- databricks/databricks-dolly-15k
- kunishou/databricks-dolly-15k-ja
- izumi-lab/llm-japanese-dataset
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
model-index:
- name: youri-7b-chat
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 51.19
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 76.09
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.06
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.17
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.06
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.52
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b-chat
      name: Open LLM Leaderboard
base_model: rinna/youri-7b
---

# `rinna/youri-7b-chat`

![rinna-icon](./rinna.png)

# Overview
The model is the instruction-tuned version of [`rinna/youri-7b`](https://huggingface.co./rinna/youri-7b). It adopts a chat-style input format.

* **Model architecture**

    A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [llama2 paper](https://arxiv.org/abs/2307.09288) for architecture details.

* **Fine-tuning**
    
    The fine-tuning data is the subset of the following datasets.
    * [Databricks Dolly data](https://huggingface.co./datasets/databricks/databricks-dolly-15k)
    * [Japanese Databricks Dolly data](https://huggingface.co./datasets/kunishou/databricks-dolly-15k-ja)
    * [Anthropic HH RLHF data](https://huggingface.co./datasets/Anthropic/hh-rlhf) and its Japanese translation
    * [FLAN Instruction Tuning data](https://github.com/google-research/FLAN) and its Japanese translation
    * [Izumi lab LLM Japanese dataset](https://github.com/masanorihirano/llm-japanese-dataset/tree/main)
      * The following sections are used
        * alt
        * aozora-txt
        * CourseraParallel
        * ParaNatCom
        * Tab-delimited_Bilingual_Sentence_Pairs
        * tanaka-corpus
        * wikinews
        * wordnet
        * yasashi-japanese
      * The [remaining sections](https://github.com/masanorihirano/llm-japanese-dataset/tree/main/datasets-cc-by-sa) contain commonly used evaluation corpora so they are skipped to prevent data leak.

* **Contributors**
    
    - [Tianyu Zhao](https://huggingface.co./tianyuz)
    - [Kei Sawada](https://huggingface.co./keisawada)

---

# Benchmarking

Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).

---

# How to use the model

~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b-chat")
model = AutoModelForCausalLM.from_pretrained("rinna/youri-7b-chat")

if torch.cuda.is_available():
    model = model.to("cuda")

instruction = "次の日本語を英語に翻訳してください。"
input = "自然言語による指示に基づきタスクが解けるよう学習させることを Instruction tuning と呼びます。"

context = [
    {
        "speaker": "設定",
        "text": instruction
    },
    {
        "speaker": "ユーザー",
        "text": input
    }
]
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in context
]
prompt = "\n".join(prompt)
prompt = (
    prompt
    + "\n"
    + "システム: "
)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        do_sample=True,
        temperature=0.5,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
設定: 次の日本語を英語に翻訳してください。
ユーザー: 自然言語による指示に基づきタスクが解けるよう学習させることを Instruction tuning と呼びます。
システム:  Learning to solve tasks based on natural language instructions is called instruction tuning.</s>
"""

output = output[len(prompt):-len("</s>")].strip()
input = "大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。"

context.extend([
    {
        "speaker": "システム",
        "text": output
    },
    {
        "speaker": "ユーザー",
        "text": input
    }
])
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in context
]
prompt = "\n".join(prompt)
prompt = (
    prompt
    + "\n"
    + "システム: "
)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=200,
        do_sample=True,
        temperature=0.5,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
設定: 次の日本語を英語に翻訳してください。
ユーザー: 自然言語による指示に基づきタスクが解けるよう学習させることを Instruction tuning と呼びます。
システム: Learning to solve tasks based on natural language instructions is called instruction tuning.
ユーザー: 大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテ キストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。
システム:  Large language models (LLMs) are computer language models consisting of a deep artificial neural network with millions to billions of parameters that are trained by self-supervised learning or semi-supervised learning using vast unlabeled text corpora.</s>
"""
~~~~

---

# Tokenization
The model uses the original llama-2 tokenizer.

---

# How to cite
```bibtex
@misc{rinna-youri-7b-chat,
    title = {rinna/youri-7b-chat},
    author = {Zhao, Tianyu and Sawada, Kei},
    url = {https://huggingface.co./rinna/youri-7b-chat}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---

# License
[The llama2 license](https://ai.meta.com/llama/license/)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_rinna__youri-7b-chat)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |48.51|
|AI2 Reasoning Challenge (25-Shot)|51.19|
|HellaSwag (10-Shot)              |76.09|
|MMLU (5-Shot)                    |46.06|
|TruthfulQA (0-shot)              |41.17|
|Winogrande (5-shot)              |75.06|
|GSM8k (5-shot)                   | 1.52|