File size: 4,072 Bytes
b93d490 3bfa5e9 b93d490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama2
language:
- ja
- en
inference: false
datasets:
- databricks/databricks-dolly-15k
- kunishou/databricks-dolly-15k-ja
- izumi-lab/llm-japanese-dataset
---
# `rinna/youri-7b-chat-gptq`
![rinna-icon](./rinna.png)
# Overview
`rinna/youri-7b-chat-gptq` is the quantized model for [`rinna/youri-7b-chat`](https://huggingface.co./rinna/youri-7b-chat) using AutoGPTQ. The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.
* **Model architecture**
Refer to the [original model](https://huggingface.co./rinna/youri-7b-chat) for architecture details.
* **Fine-tuning**
Refer to the [original model](https://huggingface.co./rinna/youri-7b-chat) for fine-tuning details.
* **Authors**
- [Toshiaki Wakatsuki](https://huggingface.co./t-w)
- [Tianyu Zhao](https://huggingface.co./tianyuz)
- [Kei Sawada](https://huggingface.co./keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b-chat-gptq")
model = AutoGPTQForCausalLM.from_quantized("rinna/youri-7b-chat-gptq", use_safetensors=True)
instruction = "次の日本語を英語に翻訳してください。"
input = "自然言語による指示に基づきタスクが解けるよう学習させることを Instruction tuning と呼びます。"
context = [
{
"speaker": "設定",
"text": instruction
},
{
"speaker": "ユーザー",
"text": input
}
]
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in context
]
prompt = "\n".join(prompt)
prompt = (
prompt
+ "\n"
+ "システム: "
)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids=token_ids.to(model.device),
max_new_tokens=200,
do_sample=True,
temperature=0.5,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
output = output[len(prompt):-len("</s>")].strip()
input = "大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。"
context.extend([
{
"speaker": "システム",
"text": output
},
{
"speaker": "ユーザー",
"text": input
}
])
prompt = [
f"{uttr['speaker']}: {uttr['text']}"
for uttr in context
]
prompt = "\n".join(prompt)
prompt = (
prompt
+ "\n"
+ "システム: "
)
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids=token_ids.to(model.device),
max_new_tokens=200,
do_sample=True,
temperature=0.5,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
~~~~
---
# Tokenization
The model uses the original llama-2 tokenizer.
---
# How to cite
~~~
@misc{RinnaYouri7bChatGPTQ,
url={https://huggingface.co./rinna/youri-7b-chat-gptq},
title={rinna/youri-7b-chat-gptq},
author={Wakatsuki, Toshiaki and Zhao, Tianyu and Sawada, Kei}
}
~~~
---
# License
[The llama2 license](https://ai.meta.com/llama/license/) |