File size: 3,845 Bytes
e035075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- llama
- llama-3
- gptq
inference: false
---

# `Llama 3 Youko 70B GPTQ (rinna/llama-3-youko-70b-gptq)`

![rinna-icon](./rinna.png)

# Overview

rinna/llama-3-youko-70b-gptq is the quantized model for [rinna/llama-3-youko-70b](https://huggingface.co./rinna/llama-3-youko-70b) using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ). The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.

| Size | Continual Pre-Training | Instruction-Tuning |
| :-   | :-                     | :-                 |
| 8B   | Llama 3 Youko 8B [[HF]](https://huggingface.co./rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co./rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-8b-instruct-gptq) |
| 70B  | Llama 3 Youko 70B [[HF]](https://huggingface.co./rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co./rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-70b-instruct-gptq) |

* **Training: Built with Meta Llama 3**

  See [rinna/llama-3-youko-70b](https://huggingface.co./rinna/llama-3-youko-70b) for details about model architecture and data.
  
* **Contributors**

    - [Toshiaki Wakatsuki](https://huggingface.co./t-w)
    - [Koh Mitsuda](https://huggingface.co./mitsu-koh)
    - [Xinqi Chen](https://huggingface.co./Keely0419)
    - [Kei Sawada](https://huggingface.co./keisawada)

---

# Benchmarking

Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).

---

# How to use the model

~~~~python
import transformers
import torch

model_id = "rinna/llama-3-youko-70b-gptq"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    device_map="auto"
)
output = pipeline(
    "西田幾多郎は、",
    max_new_tokens=256,
    do_sample=True
)
print(output)
~~~~

---

# Tokenization
The model uses the original [meta-llama/Meta-Llama-3-70B](https://huggingface.co./meta-llama/Meta-Llama-3-70B) tokenizer.

---

# How to cite
```bibtex
@misc{rinna-llama-3-youko-70b-gptq,
    title = {rinna/llama-3-youko-70b-gptq},
    author = {Wakatsuki, Toshiaki and Mitsuda, Koh and Chen, Xinqi and Sawada, Kei},
    url = {https://huggingface.co./rinna/llama-3-youko-70b-gptq}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---

# References
```bibtex
@article{llama3modelcard,
    title = {Llama 3 Model Card},
    author = {AI@Meta},
    year = {2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}

@article{frantar2022gptq,
    title = {{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers},
    author = {Frantar, Elias and Ashkboos, Saleh and Hoefler, Torsten and Alistarh, Dan},
    year = {2022},
    url = {https://arxiv.org/abs/2210.17323}
}
```
---

# License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)