File size: 3,845 Bytes
e035075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- llama
- llama-3
- gptq
inference: false
---
# `Llama 3 Youko 70B GPTQ (rinna/llama-3-youko-70b-gptq)`
![rinna-icon](./rinna.png)
# Overview
rinna/llama-3-youko-70b-gptq is the quantized model for [rinna/llama-3-youko-70b](https://huggingface.co./rinna/llama-3-youko-70b) using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ). The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.
| Size | Continual Pre-Training | Instruction-Tuning |
| :- | :- | :- |
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co./rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co./rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-8b-instruct-gptq) |
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co./rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co./rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co./rinna/llama-3-youko-70b-instruct-gptq) |
* **Training: Built with Meta Llama 3**
See [rinna/llama-3-youko-70b](https://huggingface.co./rinna/llama-3-youko-70b) for details about model architecture and data.
* **Contributors**
- [Toshiaki Wakatsuki](https://huggingface.co./t-w)
- [Koh Mitsuda](https://huggingface.co./mitsu-koh)
- [Xinqi Chen](https://huggingface.co./Keely0419)
- [Kei Sawada](https://huggingface.co./keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import transformers
import torch
model_id = "rinna/llama-3-youko-70b-gptq"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
device_map="auto"
)
output = pipeline(
"西田幾多郎は、",
max_new_tokens=256,
do_sample=True
)
print(output)
~~~~
---
# Tokenization
The model uses the original [meta-llama/Meta-Llama-3-70B](https://huggingface.co./meta-llama/Meta-Llama-3-70B) tokenizer.
---
# How to cite
```bibtex
@misc{rinna-llama-3-youko-70b-gptq,
title = {rinna/llama-3-youko-70b-gptq},
author = {Wakatsuki, Toshiaki and Mitsuda, Koh and Chen, Xinqi and Sawada, Kei},
url = {https://huggingface.co./rinna/llama-3-youko-70b-gptq}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# References
```bibtex
@article{llama3modelcard,
title = {Llama 3 Model Card},
author = {AI@Meta},
year = {2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@article{frantar2022gptq,
title = {{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers},
author = {Frantar, Elias and Ashkboos, Saleh and Hoefler, Torsten and Alistarh, Dan},
year = {2022},
url = {https://arxiv.org/abs/2210.17323}
}
```
---
# License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/) |