Feature Extraction
Transformers
PyTorch
Safetensors
Japanese
hubert
speech
yky-h commited on
Commit
6e28e77
·
1 Parent(s): 3968039

first commit

Browse files
Files changed (5) hide show
  1. README.md +62 -0
  2. config.json +71 -0
  3. fairseq/model.pt +3 -0
  4. pytorch_model.bin +3 -0
  5. rinna.png +0 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ja
3
+ datasets:
4
+ - reazon-research/reazonspeech
5
+ tags:
6
+ - hubert
7
+ - speech
8
+ license: apache-2.0
9
+ ---
10
+
11
+ # japanese-hubert-base
12
+
13
+ ![rinna-icon](./rinna.png)
14
+
15
+ This is a Japanese HuBERT (Hidden Unit Bidirectional Encoder Representations from Transformers) model trained by [rinna Co., Ltd.](https://rinna.co.jp/)
16
+
17
+ This model was traind using a large-scale Japanese audio dataset, [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) corpus.
18
+
19
+ ## How to use the model
20
+
21
+ ```python
22
+ import torch
23
+ from transformers import HubertModel
24
+
25
+ model = HubertModel.from_pretrained("rinna/japanese-hubert-base")
26
+ model.eval()
27
+
28
+ wav_input_16khz = torch.randn(1, 10000)
29
+ outputs = model(wav_input_16khz)
30
+ print(f"Input: {wav_input_16khz.size()}") # [1, 10000]
31
+ print(f"Output: {outputs.last_hidden_state.size()}") # [1, 31, 768]
32
+ ```
33
+
34
+ ## Model summary
35
+
36
+ The model architecture is the same as the [original HuBERT base model](https://huggingface.co/facebook/hubert-base-ls960), which contains 12 transformer layers with 8 attention heads.
37
+ The model was trained using code from the [official repository](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert), and the detailed training configuration can be found in the same repository and the [original paper](https://ieeexplore.ieee.org/document/9585401).
38
+
39
+ A fairseq checkpoint file can also be available [here](https://huggingface.co/rinna/japanese-hubert-base/tree/main/fairseq).
40
+
41
+ ## Training
42
+
43
+ The model was trained on approximately 19,000 hours of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech) corpus.
44
+
45
+ ## License
46
+
47
+ [The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
48
+
49
+
50
+ ## Citation
51
+ ```bibtex
52
+ @article{hubert2021hsu,
53
+ author={Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
54
+ journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
55
+ title={HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units},
56
+ year={2021},
57
+ volume={29},
58
+ number={},
59
+ pages={3451-3460},
60
+ doi={10.1109/TASLP.2021.3122291}
61
+ }
62
+ ```
config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.1,
3
+ "apply_spec_augment": true,
4
+ "architectures": [
5
+ "HubertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "bos_token_id": 1,
9
+ "classifier_proj_size": 256,
10
+ "conv_bias": false,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "sum",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": false,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_norm": "group",
44
+ "feat_proj_dropout": 0.0,
45
+ "feat_proj_layer_norm": true,
46
+ "final_dropout": 0.1,
47
+ "hidden_act": "gelu",
48
+ "hidden_dropout": 0.1,
49
+ "hidden_size": 768,
50
+ "initializer_range": 0.02,
51
+ "intermediate_size": 3072,
52
+ "layer_norm_eps": 1e-05,
53
+ "layerdrop": 0.1,
54
+ "mask_feature_length": 10,
55
+ "mask_feature_min_masks": 0,
56
+ "mask_feature_prob": 0.0,
57
+ "mask_time_length": 10,
58
+ "mask_time_min_masks": 2,
59
+ "mask_time_prob": 0.05,
60
+ "model_type": "hubert",
61
+ "num_attention_heads": 12,
62
+ "num_conv_pos_embedding_groups": 16,
63
+ "num_conv_pos_embeddings": 128,
64
+ "num_feat_extract_layers": 7,
65
+ "num_hidden_layers": 12,
66
+ "pad_token_id": 0,
67
+ "torch_dtype": "float32",
68
+ "transformers_version": "4.28.1",
69
+ "use_weighted_layer_sum": false,
70
+ "vocab_size": 32
71
+ }
fairseq/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dade3cf824ae0d214f7de8b73e70bae7c101e81f12d93577c4760bf516db4063
3
+ size 378888853
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c023ccb71e4c2b5a324c94fc5ebe12403d3081c5f370df229892419996fd113
3
+ size 377554841
rinna.png ADDED