--- language: ja thumbnail: https://github.com/rinnakk/japanese-gpt2/blob/master/rinna.png tags: - ja - japanese - gpt2 - text-generation - lm - nlp license: mit datasets: - cc100 - wikipedia widget: - text: "生命、宇宙、そして万物についての究極の疑問の答えは" --- # japanese-gpt2-xsmall ![rinna-icon](./rinna.png) This repository provides an extra-small-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ from transformers import T5Tokenizer, GPT2LMHeadModel tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt2-small") tokenizer.do_lower_case = True # due to some bug of tokenizer config loading model = GPT2LMHeadModel.from_pretrained("rinna/japanese-gpt2-small") ~~~~ # Model architecture A 6-layer, 512-hidden-size transformer-based language model. # Training The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 4 days. It reaches around 28 perplexity on a chosen validation set from CC-100. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script. # Licenese [The MIT license](https://opensource.org/licenses/MIT)