--- language: ja thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png tags: - Feature Extraction - ja - japanese - clip - cloob - vision --- # rinna/japanese-cloob-vit-b-16 ![rinna-icon](./rinna.png) This repository provides a Japanese [CLOOB (Contrastive Leave One Out Boost)](https://arxiv.org/abs/2110.11316) model. The model was trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model 1. Install package ```shell $ pip install git+https://github.com/rinnakk/japanese-clip.git ``` 2. Run ```python import io import requests from PIL import Image import torch import japanese_clip as ja_clip device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = ja_clip.load("rinna/japanese-cloob-vit-b-16", device=device) tokenizer = ja_clip.load_tokenizer() img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content)) image = preprocess(img).unsqueeze(0).to(device) encodings = ja_clip.tokenize( texts=["犬", "猫", "象"], max_seq_len=77, device=device, tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time ) with torch.no_grad(): image_features = model.get_image_features(image) text_features = model.get_text_features(**encodings) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[1.0, 0.0, 0.0]] ```