File size: 2,155 Bytes
ef187de a7d435b f093721 a7d435b f093721 a7d435b ef187de a7d435b 357abcb 05b5019 357abcb a7d435b 05b5019 a7d435b 062b689 a7d435b 062b689 a7d435b 062b689 a7d435b f093721 2707159 f093721 da2e08c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language: ja
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: apache-2.0
tags:
- feature-extraction
- ja
- japanese
- clip
- vision
---
# rinna/japanese-clip-vit-b-16
![rinna-icon](./rinna.png)
This is a Japanese [CLIP (Contrastive Language-Image Pre-Training)](https://arxiv.org/abs/2103.00020) model trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/).
Please see [japanese-clip](https://github.com/rinnakk/japanese-clip) for the other available models.
# How to use the model
1. Install package
```shell
$ pip install git+https://github.com/rinnakk/japanese-clip.git
```
2. Run
```python
import io
import requests
from PIL import Image
import torch
import japanese_clip as ja_clip
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = ja_clip.load("rinna/japanese-clip-vit-b-16", cache_dir="/tmp/japanese_clip", device=device)
tokenizer = ja_clip.load_tokenizer()
img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content))
image = preprocess(img).unsqueeze(0).to(device)
encodings = ja_clip.tokenize(
texts=["犬", "猫", "象"],
max_seq_len=77,
device=device,
tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time
)
with torch.no_grad():
image_features = model.get_image_features(image)
text_features = model.get_text_features(**encodings)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs) # prints: [[1.0, 0.0, 0.0]]
```
# Model architecture
The model was trained a ViT-B/16 Transformer architecture as an image encoder and uses a 12-layer BERT as a text encoder. The image encoder was initialized from the [AugReg `vit-base-patch16-224` model](https://github.com/google-research/vision_transformer).
# Training
The model was trained on [CC12M](https://github.com/google-research-datasets/conceptual-12m) translated the captions to Japanese.
# License
[The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
|