--- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: mit datasets: - Anthropic/hh-rlhf language: - ja - en inference: false --- # bilingual-gpt-neox-4b-instruction-ppo ![rinna-icon](./rinna.png) --- # Overview This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters. The model is based on [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co./rinna/bilingual-gpt-neox-4b-instruction-sft) and has been aligned to serve as an instruction-following conversational agent. * **Model architecture** A 36-layer, 2816-hidden-size transformer-based language model. * **RLHF** Following the [OpenAI InstructGPT paper](https://arxiv.org/abs/2203.02155), **Reinforcement Learning from Human Feedback** (RLHF) has been applied to aligning the model's behaviour with input instructions. Particularly, the model has been trained in two stages, i.e. **Supervised Fine-Tuning** (SFT) and [PPO](https://arxiv.org/abs/1707.06347)-based **Reinforcement Learning** (RL). * The first SFT stage produces [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co./rinna/bilingual-gpt-neox-4b-instruction-sft). * The second RL stage produces this model. * **Model Series** | Variant | Link | | :-- | :--| | Bilingual 4B MiniGPT4 | https://huggingface.co./rinna/bilingual-gpt-neox-4b-minigpt4 | | Bilingual 4B PPO | https://huggingface.co./rinna/bilingual-gpt-neox-4b-instruction-ppo | | Bilingual 4B SFT | https://huggingface.co./rinna/bilingual-gpt-neox-4b-instruction-sft | | Bilingual 4B 8K | https://huggingface.co./rinna/bilingual-gpt-neox-4b-8k | | Bilingual 4B | https://huggingface.co./rinna/bilingual-gpt-neox-4b | | Japanese 3.6B PPO | https://huggingface.co./rinna/japanese-gpt-neox-3.6b-instruction-ppo | | Japanese 3.6B SFT-v2 | https://huggingface.co./rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 | | Japanese 3.6B SFT | https://huggingface.co./rinna/japanese-gpt-neox-3.6b-instruction-sft | | Japanese 3.6B | https://huggingface.co./rinna/japanese-gpt-neox-3.6b | * **Authors** [Tianyu Zhao](https://huggingface.co./tianyuz) and [Kei Sawada](https://huggingface.co./keisawada) --- # I/O Format A special format has been adopted to construct inputs. * An input prompt is formatted as a conversation between `ユーザー` and `システム`. * Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`). * The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response. * All the utterances in the input prompt should be separated by a newline `\n`. Following is an example to construct input from a conversation. ~~~python prompt = [ { "speaker": "ユーザー", "text": "Hello, you are an assistant that helps me learn Japanese." }, { "speaker": "システム", "text": "Sure, what can I do for you?" }, { "speaker": "ユーザー", "text": "VRはなんですか。" } ] prompt = [ f"{uttr['speaker']}: {uttr['text']}" for uttr in prompt ] prompt = "\n".join(prompt) prompt = ( prompt + "\n" + "システム: " ) print(prompt) """ ユーザー: Hello, you are an assistant that helps me learn Japanese. システム: Sure, what can I do for you? ユーザー: VRはなんですか。 システム: """ ~~~ --- # How to use the model **Notice:** Since the model is **sensitive to decoding hyper-parameters** (e.g. `temperature`, `top_p`, `top_k`, `repetition_penalty`), it is suggested to explore the best setting for your task. ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo", use_fast=False) model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo") if torch.cuda.is_available(): model = model.to("cuda") token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=512, do_sample=True, temperature=1.0, top_p=0.85, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):]) print(output) """VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。""" ~~~~ --- # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. * The tokenizer has a vocabulary size of 65,536. * It uses *byte fallback* to decompose unknown text pieces into UTF-8 byte pieces to avoid producing `` tokens. * It can recognize *consecutive whitespaces*, *newlines*, and *tabs* to handle structured texts better. * We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese. * Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. `_Hello`). * This decision trades the English processing efficiency for a unified way to treat whitespaces. * It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict. * **Don't forget to set `use_fast=False` to make the above features function correctly.** --- # Licenese [The MIT license](https://opensource.org/licenses/MIT)