ricardoSLabs commited on
Commit
9aa45ee
·
verified ·
1 Parent(s): 35e7d95

End of training

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ricardoSLabs/pre_CIDAUTv2
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: pre_CIDAUTv3
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9841269841269841
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # pre_CIDAUTv3
33
+
34
+ This model is a fine-tuned version of [ricardoSLabs/pre_CIDAUTv2](https://huggingface.co/ricardoSLabs/pre_CIDAUTv2) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1209
37
+ - Accuracy: 0.9841
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 5
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
71
+ | No log | 0.8889 | 4 | 0.5177 | 0.7937 |
72
+ | No log | 2.0 | 9 | 0.3085 | 0.8889 |
73
+ | 1.0669 | 2.8889 | 13 | 0.2461 | 0.8889 |
74
+ | 1.0669 | 4.0 | 18 | 0.1346 | 0.9683 |
75
+ | 0.2558 | 4.4444 | 20 | 0.1209 | 0.9841 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.45.1
81
+ - Pytorch 2.4.0
82
+ - Datasets 3.0.1
83
+ - Tokenizers 0.20.0