File size: 2,024 Bytes
29d3903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5820e63
29d3903
 
 
 
 
 
 
 
 
5820e63
 
29d3903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5820e63
29d3903
 
 
 
 
5820e63
 
 
 
 
29d3903
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: paper_model_2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# paper_model_2

This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co./microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0013
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.0167        | 0.9954 | 162  | 0.0135          | 0.9966   |
| 0.0032        | 1.9969 | 325  | 0.0030          | 0.9992   |
| 0.0038        | 2.9985 | 488  | 0.0021          | 0.9992   |
| 0.0022        | 4.0    | 651  | 0.0013          | 1.0      |
| 0.0016        | 4.9770 | 810  | 0.0013          | 1.0      |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1