--- license: apache-2.0 base_model: LaLegumbreArtificial/Fraunhofer_Classical tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Fraunhofer_Classical_multiclass results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.761384335154827 --- # Fraunhofer_Classical_multiclass This model is a fine-tuned version of [LaLegumbreArtificial/Fraunhofer_Classical](https://huggingface.co./LaLegumbreArtificial/Fraunhofer_Classical) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1740 - Accuracy: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0716 | 0.9976 | 208 | 0.8637 | 0.7752 | | 0.0478 | 2.0 | 417 | 0.7157 | 0.8339 | | 0.0408 | 2.9976 | 625 | 0.9172 | 0.8080 | | 0.031 | 4.0 | 834 | 0.9607 | 0.8104 | | 0.0258 | 4.9880 | 1040 | 1.1740 | 0.7614 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1