File size: 8,425 Bytes
ca191d1 4764103 ca191d1 4764103 007ab62 4764103 007ab62 ca191d1 8c172ee ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 e5c1d7b 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 0bd114c ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 ca191d1 4764103 007ab62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portuguese
- brasil
- gemma
- portugues
- instrucao
base_model: google/gemma-2b-it
datasets:
- rhaymison/superset
pipeline_tag: text-generation
model-index:
- name: gemma-portuguese-tom-cat-2b-it
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 27.71
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 29.07
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 27.97
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 46.84
name: f1-macro
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 14.06
name: pearson
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 29.39
name: f1-macro
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 46.59
name: f1-macro
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 45.36
name: f1-macro
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 18.86
name: f1-macro
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
name: Open Portuguese LLM Leaderboard
---
# gemma-portuguese-tom-cat-2b-it
<p align="center">
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/tom-cat-2b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>
## Model description
updated: 2024-04-10 20:06
The gemma-portuguese-tom-cat-2b-it model is a portuguese model trained with the superset dataset with 250,000 instructions.
The model is mainly focused on text generation and instruction.
The model was not trained on math and code tasks.
The model is generalist with focus on understand portuguese inferences.
With this fine tuning for portuguese, you can adjust the model for a specific field.
## How to Use
```python
from transformers import AutoTokenizer, pipeline
import torch
model = "rhaymison/gemma-portuguese-tom-cat-2b-it"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages = [
{
"role": "system",
"content": "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
},
{"role": "user", "content": "Me conte sobre a ida do homem a Lua."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.2,
top_k=50,
top_p=0.95
)
```
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it")
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it", device_map={"":0})
tokenizer2.pad_token = tokenizer2.eos_token
tokenizer2.add_eos_token = True
tokenizer2.add_bos_token, tokenizer2.add_eos_token
tokenizer2.padding_side = "right"
```
```python
def format_template( question:str):
system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
text = f"""<bos>system
{system_prompt}<end_of_turn>
<start_of_turn>user
###instrução: {question} <end_of_turn>
<start_of_turn>model"""
return text
question = format_template("Me conte sobre a ida do homem a Lua")
device = "cuda:0"
inputs = tokenizer2(text, return_tensors="pt").to(device)
outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)
output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))
```
### Comments
Any idea, help or report will always be welcome.
email: [email protected]
<div style="display:flex; flex-direction:row; justify-content:left">
<a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank">
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
</a>
<a href="https://github.com/rhaymisonbetini" target="_blank">
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
</a>
</div>
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/gemma-portuguese-tom-cat-2b-it) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**31.76**|
|ENEM Challenge (No Images)| 27.71|
|BLUEX (No Images) | 29.07|
|OAB Exams | 27.97|
|Assin2 RTE | 46.84|
|Assin2 STS | 14.06|
|FaQuAD NLI | 29.39|
|HateBR Binary | 46.59|
|PT Hate Speech Binary | 45.36|
|tweetSentBR | 18.86|
|