File size: 8,425 Bytes
ca191d1
4764103
 
 
ca191d1
4764103
 
 
 
 
 
007ab62
4764103
 
 
007ab62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca191d1
 
8c172ee
ca191d1
 
4764103
 
 
ca191d1
 
 
4764103
ca191d1
4764103
ca191d1
e5c1d7b
4764103
 
 
 
ca191d1
4764103
ca191d1
 
4764103
 
 
ca191d1
0bd114c
ca191d1
4764103
 
 
 
 
 
 
ca191d1
4764103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca191d1
 
4764103
 
ca191d1
4764103
 
 
 
 
 
 
ca191d1
4764103
 
 
 
 
 
 
 
 
ca191d1
4764103
ca191d1
4764103
ca191d1
4764103
ca191d1
4764103
ca191d1
4764103
 
 
ca191d1
4764103
ca191d1
4764103
ca191d1
4764103
ca191d1
4764103
 
 
 
 
 
 
007ab62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portuguese
- brasil
- gemma
- portugues
- instrucao
base_model: google/gemma-2b-it
datasets:
- rhaymison/superset
pipeline_tag: text-generation
model-index:
- name: gemma-portuguese-tom-cat-2b-it
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 27.71
      name: accuracy
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 29.07
      name: accuracy
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 27.97
      name: accuracy
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 46.84
      name: f1-macro
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 14.06
      name: pearson
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 29.39
      name: f1-macro
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 46.59
      name: f1-macro
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 45.36
      name: f1-macro
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 18.86
      name: f1-macro
    source:
      url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-tom-cat-2b-it
      name: Open Portuguese LLM Leaderboard
---

# gemma-portuguese-tom-cat-2b-it


<p align="center">
  <img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/tom-cat-2b.webp"  width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>



## Model description

updated: 2024-04-10 20:06

The gemma-portuguese-tom-cat-2b-it model is a portuguese model trained with the superset dataset with 250,000 instructions. 
The model is mainly focused on text generation and instruction.
The model was not trained on math and code tasks.
The model is generalist with focus on understand portuguese inferences. 
With this fine tuning for portuguese, you can adjust the model for a specific field.

## How to Use


```python
from transformers import AutoTokenizer, pipeline
import torch

model = "rhaymison/gemma-portuguese-tom-cat-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

messages = [
   {
      "role": "system",
      "content": "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    },
    {"role": "user", "content": "Me conte sobre a ida do homem a Lua."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
    prompt,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.2,
    top_k=50,
    top_p=0.95
)
```


```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it")
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it", device_map={"":0})
tokenizer2.pad_token = tokenizer2.eos_token
tokenizer2.add_eos_token = True
tokenizer2.add_bos_token, tokenizer2.add_eos_token
tokenizer2.padding_side = "right"
```

```python
def format_template( question:str):
    system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    text = f"""<bos>system
    {system_prompt}<end_of_turn>
    <start_of_turn>user
    ###instrução: {question} <end_of_turn>
    <start_of_turn>model"""
    return text

question = format_template("Me conte sobre a ida do homem a Lua")

device = "cuda:0"

inputs = tokenizer2(text, return_tensors="pt").to(device)

outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)

output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))
```

### Comments

Any idea, help or report will always be welcome.

email: [email protected]

 <div style="display:flex; flex-direction:row; justify-content:left">
    <a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank">
    <img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
  </a>
  <a href="https://github.com/rhaymisonbetini" target="_blank">
    <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
  </a>
 </div>


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/gemma-portuguese-tom-cat-2b-it) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**31.76**|
|ENEM Challenge (No Images)|    27.71|
|BLUEX (No Images)         |    29.07|
|OAB Exams                 |    27.97|
|Assin2 RTE                |    46.84|
|Assin2 STS                |    14.06|
|FaQuAD NLI                |    29.39|
|HateBR Binary             |    46.59|
|PT Hate Speech Binary     |    45.36|
|tweetSentBR               |    18.86|