--- language: - pt license: apache-2.0 library_name: transformers tags: - portugues - portuguese - QA - instruct base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - rhaymison/superset pipeline_tag: text-generation model-index: - name: Llama3-portuguese-luana-8b-instruct results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 69.0 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 51.74 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 47.56 name: accuracy source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 89.24 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 72.87 name: pearson source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 68.94 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 85.93 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 64.16 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 63.91 name: f1-macro source: url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Llama3-portuguese-luana-8b-instruct name: Open Portuguese LLM Leaderboard --- # Llama3-portuguese-luana-8b-instruct
This model was trained with a superset of 290,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama3 8B, the model was adjusted mainly for chat. # How to use ### FULL MODEL : A100 ### HALF MODEL: L4 ### 8bit or 4bit : T4 or V100 You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 8b) to perform much better. ```python !pip install -q -U transformers !pip install -q -U accelerate !pip install -q -U bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct", device_map= {"": 0}) tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct") model.eval() ``` You can use with Pipeline. ```python from transformers import pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, do_sample=True, max_new_tokens=256, num_beams=2, temperature=0.3, top_k=50, top_p=0.95, early_stopping=True, pad_token_id=tokenizer.eos_token_id, ) def format_prompt(question:str): system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido." return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> { system_prompt }<|eot_id|><|start_header_id|>user<|end_header_id|> { question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" prompt = format_prompt("Me explique quem eram os Romanos") result = pipe(prompt) result[0]["generated_text"].split("assistant<|end_header_id|>")[1] #Os romanos eram um povo antigo que habitava a península italiana, particularmente na região que hoje é conhecida como Itália. Eles estabeleceram o Império Romano, #que se tornou uma das maiores e mais poderosas civilizações da história. Os romanos eram conhecidos por suas conquistas militares, sua arquitetura e engenharia #impressionantes e sua influência duradoura na cultura ocidental. #Os romanos eram uma sociedade complexa que consistia em várias classes sociais, incluindo senadores, cavaleiros, plebeus e escravos. #Eles tinham um sistema de governo baseado em uma república, onde o poder era dividido entre o Senado e a Assembléia do Povo. #Os romanos eram conhecidos por suas conquistas militares, que os levaram a expandir seu império por toda a Europa, Ásia e África. #Eles estabeleceram uma rede de estradas, pontes e outras estruturas que facilitaram a comunicação e o comércio. ``` If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. # 4bits example ```python from transformers import BitsAndBytesConfig import torch nb_4bit_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map={"": 0} ) ``` # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Llama3-portuguese-luana-8b-instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**68.15**| |ENEM Challenge (No Images)| 69| |BLUEX (No Images) | 51.74| |OAB Exams | 47.56| |Assin2 RTE | 89.24| |Assin2 STS | 72.87| |FaQuAD NLI | 68.94| |HateBR Binary | 85.93| |PT Hate Speech Binary | 64.16| |tweetSentBR | 63.91| ### Comments Any idea, help or report will always be welcome. email: rhaymisoncristian@gmail.com