--- language: - pt license: apache-2.0 library_name: transformers tags: - portugues - portuguese - QA - instruct base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - rhaymison/superset pipeline_tag: text-generation --- # Llama 3 portuguese Tom cat 8b instruct GGUF

This model was trained with a superset of 300,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Tom cat 8b instruct , the model was adjusted mainly for chat. ```python !git lfs install !pip install langchain !pip install langchain-community langchain-core !pip install llama-cpp-python !git clone https://huggingface.co./rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct-q8-gguf/ def llamacpp(): from langchain.llms import LlamaCpp from langchain.prompts import PromptTemplate from langchain.chains import LLMChain llm = LlamaCpp( model_path="/content/Llama-3-portuguese-Tom-cat-8b-instruct-q8-gguf", n_gpu_layers=40, n_batch=512, verbose=True, ) template = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.<|eot_id|><|start_header_id|>user<|end_header_id|> { question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4?" response = llm_chain.run({"question": question}) print(response) ``` ### Comments Any idea, help or report will always be welcome. email: rhaymisoncristian@gmail.com