model update
Browse files- README.md +215 -0
- config.json +1 -1
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json +1 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -0
- eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_koquad.default.txt +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: ko
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_koquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
- answer extraction
|
17 |
+
widget:
|
18 |
+
- text: "generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다."
|
19 |
+
example_title: "Question Generation Example 1"
|
20 |
+
- text: "generate question: 백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다."
|
21 |
+
example_title: "Question Generation Example 2"
|
22 |
+
- text: "generate question: <hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다."
|
23 |
+
example_title: "Question Generation Example 3"
|
24 |
+
- text: "extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다."
|
25 |
+
example_title: "Answer Extraction Example 1"
|
26 |
+
- text: "extract answers: 지난 22일 아프리카TV는 BJ 철구가 서비스 정지 처분을 받았음을 밝혔다. 서비스 정지 처분을 사유는 철구가 10대 청소년에게 유해한 장면을 방송으로 내보냈기 때문이었다. 문제가 된 장면은 BJ 철구가 미성년자는 시청할 수 없게 하는 19세 시청 가능 설정을 하지 않은 채 흡연하는 모습을 여과 없이 드러낸 장면이다. 아프리카TV는 청소년 보호 정책의 '청소년들이 해로운 환경으로부터 보호받을 수 있도록 조치한다'라고 조항을 근거로 철구에게 서비스 정지 처분을 내렸다. 흡연 이외에 음주 방송 등도 19세 시청 가능 설정을 해야만 방송할 수 있다. <hl> 게다가 철구의 방송 정지 처분은 이번에 처음이 아니라 16번 째기 때문에 더욱더 논란이 되고 있다. <hl>"
|
27 |
+
example_title: "Answer Extraction Example 2"
|
28 |
+
model-index:
|
29 |
+
- name: lmqg/mbart-large-cc25-koquad-qg-ae
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
name: Text2text Generation
|
33 |
+
type: text2text-generation
|
34 |
+
dataset:
|
35 |
+
name: lmqg/qg_koquad
|
36 |
+
type: default
|
37 |
+
args: default
|
38 |
+
metrics:
|
39 |
+
- name: BLEU4 (Question Generation)
|
40 |
+
type: bleu4_question_generation
|
41 |
+
value: 10.7
|
42 |
+
- name: ROUGE-L (Question Generation)
|
43 |
+
type: rouge_l_question_generation
|
44 |
+
value: 27.02
|
45 |
+
- name: METEOR (Question Generation)
|
46 |
+
type: meteor_question_generation
|
47 |
+
value: 29.73
|
48 |
+
- name: BERTScore (Question Generation)
|
49 |
+
type: bertscore_question_generation
|
50 |
+
value: 83.52
|
51 |
+
- name: MoverScore (Question Generation)
|
52 |
+
type: moverscore_question_generation
|
53 |
+
value: 82.79
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
|
56 |
+
value: 80.81
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
|
59 |
+
value: 84.32
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
|
62 |
+
value: 77.64
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
|
65 |
+
value: 83.42
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
|
68 |
+
value: 88.44
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
|
71 |
+
value: 79.08
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 24.34
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 82.78
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 59.82
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 95.53
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 94.69
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 88.2
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 82.17
|
93 |
+
---
|
94 |
+
|
95 |
+
# Model Card of `lmqg/mbart-large-cc25-koquad-qg-ae`
|
96 |
+
This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
+
|
98 |
+
|
99 |
+
### Overview
|
100 |
+
- **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)
|
101 |
+
- **Language:** ko
|
102 |
+
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
|
103 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
104 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
105 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
106 |
+
|
107 |
+
### Usage
|
108 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
109 |
+
```python
|
110 |
+
from lmqg import TransformersQG
|
111 |
+
|
112 |
+
# initialize model
|
113 |
+
model = TransformersQG(language="ko", model="lmqg/mbart-large-cc25-koquad-qg-ae")
|
114 |
+
|
115 |
+
# model prediction
|
116 |
+
question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
|
117 |
+
|
118 |
+
```
|
119 |
+
|
120 |
+
- With `transformers`
|
121 |
+
```python
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-koquad-qg-ae")
|
125 |
+
|
126 |
+
# answer extraction
|
127 |
+
answer = pipe("generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
|
128 |
+
|
129 |
+
# question generation
|
130 |
+
question = pipe("extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다.")
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
|
136 |
+
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json)
|
138 |
+
|
139 |
+
| | Score | Type | Dataset |
|
140 |
+
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
141 |
+
| BERTScore | 83.52 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
142 |
+
| Bleu_1 | 26.03 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
143 |
+
| Bleu_2 | 18.93 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
144 |
+
| Bleu_3 | 14.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
145 |
+
| Bleu_4 | 10.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
146 |
+
| METEOR | 29.73 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
147 |
+
| MoverScore | 82.79 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
148 |
+
| ROUGE_L | 27.02 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
149 |
+
|
150 |
+
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json)
|
152 |
+
|
153 |
+
| | Score | Type | Dataset |
|
154 |
+
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
155 |
+
| QAAlignedF1Score (BERTScore) | 80.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
156 |
+
| QAAlignedF1Score (MoverScore) | 83.42 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
157 |
+
| QAAlignedPrecision (BERTScore) | 77.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
158 |
+
| QAAlignedPrecision (MoverScore) | 79.08 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
159 |
+
| QAAlignedRecall (BERTScore) | 84.32 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
160 |
+
| QAAlignedRecall (MoverScore) | 88.44 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
161 |
+
|
162 |
+
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 82.17 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
168 |
+
| AnswerF1Score | 88.2 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
169 |
+
| BERTScore | 95.53 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
170 |
+
| Bleu_1 | 68.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
171 |
+
| Bleu_2 | 56.84 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
172 |
+
| Bleu_3 | 40.49 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
173 |
+
| Bleu_4 | 24.34 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
174 |
+
| METEOR | 59.82 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
175 |
+
| MoverScore | 94.69 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
176 |
+
| ROUGE_L | 82.78 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
## Training hyperparameters
|
181 |
+
|
182 |
+
The following hyperparameters were used during fine-tuning:
|
183 |
+
- dataset_path: lmqg/qg_koquad
|
184 |
+
- dataset_name: default
|
185 |
+
- input_types: ['paragraph_answer', 'paragraph_sentence']
|
186 |
+
- output_types: ['question', 'answer']
|
187 |
+
- prefix_types: ['qg', 'ae']
|
188 |
+
- model: facebook/mbart-large-cc25
|
189 |
+
- max_length: 512
|
190 |
+
- max_length_output: 32
|
191 |
+
- epoch: 6
|
192 |
+
- batch: 2
|
193 |
+
- lr: 0.0001
|
194 |
+
- fp16: False
|
195 |
+
- random_seed: 1
|
196 |
+
- gradient_accumulation_steps: 32
|
197 |
+
- label_smoothing: 0.15
|
198 |
+
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/trainer_config.json).
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
```
|
203 |
+
@inproceedings{ushio-etal-2022-generative,
|
204 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
205 |
+
author = "Ushio, Asahi and
|
206 |
+
Alva-Manchego, Fernando and
|
207 |
+
Camacho-Collados, Jose",
|
208 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
209 |
+
month = dec,
|
210 |
+
year = "2022",
|
211 |
+
address = "Abu Dhabi, U.A.E.",
|
212 |
+
publisher = "Association for Computational Linguistics",
|
213 |
+
}
|
214 |
+
|
215 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lmqg_output/mbart-large-cc25-koquad-qg-ae/
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lmqg_output/mbart-large-cc25-koquad-qg-ae/model_yyyubh/epoch_5",
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"QAAlignedF1Score (BERTScore)": 0.8080531331560218, "QAAlignedRecall (BERTScore)": 0.8432085347440835, "QAAlignedPrecision (BERTScore)": 0.7764423377788053, "QAAlignedF1Score (MoverScore)": 0.8341647325006587, "QAAlignedRecall (MoverScore)": 0.884428816496664, "QAAlignedPrecision (MoverScore)": 0.790849078156105, "Bleu_1": 0.06006353283216381, "Bleu_2": 0.03277271597776233, "Bleu_3": 0.01679141278827258, "Bleu_4": 0.008701219699473002, "METEOR": 0.2096936779895271, "ROUGE_L": 0.10486478215766001, "BERTScore": 0.6530535750859281, "MoverScore": 0.6212690775930128}, "validation": {"QAAlignedF1Score (BERTScore)": 0.8320523455339407, "QAAlignedRecall (BERTScore)": 0.842912377202491, "QAAlignedPrecision (BERTScore)": 0.8218751313450386, "QAAlignedF1Score (MoverScore)": 0.8776802710910037, "QAAlignedRecall (MoverScore)": 0.8900046908054511, "QAAlignedPrecision (MoverScore)": 0.8670147916474056, "Bleu_1": 0.24769373372825015, "Bleu_2": 0.16276359134020726, "Bleu_3": 0.10296341046122665, "Bleu_4": 0.0631750284426749, "METEOR": 0.3244083271656011, "ROUGE_L": 0.2514414206314093, "BERTScore": 0.7588320937007665, "MoverScore": 0.6899094830883825}}
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.24001131861912395, "Bleu_2": 0.17337773126724246, "Bleu_3": 0.12863453775221245, "Bleu_4": 0.0967813335443571}, "test": {"Bleu_1": 0.25700589970500975, "Bleu_2": 0.18655624690855915, "Bleu_3": 0.13921999044020586, "Bleu_4": 0.10522212620417044}}
|
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.6473646468267616, "Bleu_2": 0.5223649094151351, "Bleu_3": 0.3708659604524931, "Bleu_4": 0.22928480043252533, "METEOR": 0.5810308270805657, "ROUGE_L": 0.8033567513331389, "BERTScore": 0.9471528558548317, "MoverScore": 0.9376238552757546, "AnswerF1Score": 85.70134600751668, "AnswerExactMatch": 79.62192160943462}, "test": {"Bleu_1": 0.6880666727721688, "Bleu_2": 0.5684242128732656, "Bleu_3": 0.4048775421649216, "Bleu_4": 0.24343180251763877, "METEOR": 0.5982393486155895, "ROUGE_L": 0.8277957798666822, "BERTScore": 0.9553042152173561, "MoverScore": 0.9469417855096769, "AnswerF1Score": 88.20101741568419, "AnswerExactMatch": 82.17134928893513}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.27035303490513696, "Bleu_2": 0.19930839007285978, "Bleu_3": 0.1501884183509421, "Bleu_4": 0.11424533846569236, "METEOR": 0.30116603338636466, "ROUGE_L": 0.2760626109540457, "BERTScore": 0.8260049123941742, "MoverScore": 0.8266965044904961}, "test": {"Bleu_1": 0.2602554141015628, "Bleu_2": 0.18932977159555883, "Bleu_3": 0.1414435531316931, "Bleu_4": 0.10703670501766625, "METEOR": 0.2973001847077773, "ROUGE_L": 0.27015462949790164, "BERTScore": 0.83523548089995, "MoverScore": 0.8278969743029401}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_koquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7130820f5d338a88c9eb376f13f754fff44599066d6a537029a720bd1f12364
|
3 |
+
size 2444587421
|
tokenizer_config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
-
"name_or_path": "lmqg_output/mbart-large-cc25-koquad-qg-ae/
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
+
"name_or_path": "lmqg_output/mbart-large-cc25-koquad-qg-ae/model_yyyubh/epoch_5",
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qg_koquad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "facebook/mbart-large-cc25", "max_length": 512, "max_length_output": 32, "epoch": 6, "batch": 2, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 32, "label_smoothing": 0.15}
|