File size: 6,736 Bytes
1076fcf ce1f658 2c7d17d 4e7312f 9e45a75 4e7312f 9e45a75 4e7312f 1076fcf ce1f658 dcf1e76 bcf8dff dcf1e76 ce1f658 bcf8dff 4abee59 ce1f658 4e7312f 2c7d17d 8090ce5 4e7312f ce1f658 8090ce5 bcf8dff 2c7d17d bcf8dff ce1f658 bcf8dff 9eceafb ce1f658 bcf8dff 01d2cf4 266de40 ce1f658 749980f ce1f658 749980f ce1f658 749980f ce1f658 bcf8dff ce1f658 bcf8dff ce1f658 5d6823a ce1f658 bcf8dff ce1f658 bcf8dff ce1f658 2c7d17d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
license: cc-by-sa-4.0
datasets:
- bigcode/the-stack-dedup
tags:
- code
language:
- code
programming_language:
- Markdown
- Java
- JavaScript
- Python
- TypeScript
- PHP
- SQL
- JSX
- reStructuredText
- Rust
- C
- CSS
- Go
- C++
- HTML
- Vue
- Ruby
- Jupyter Notebook
- R
- Shell
model-index:
- name: replit-code-v1-3b
results:
- task:
name: Code Generation
type: code-generation
dataset:
name: "HumanEval"
type: openai_humaneval
metrics:
- name: pass@1
type: pass@1
value: 0.219
verified: false
---
# replit-code-v1-3b
Developed by: Replit, Inc.
[**🧑💻 Test it on our Demo Space! 🧑💻**](https://huggingface.co./spaces/replit/replit-code-v1-3b-demo)
## Model Description
`replit-code-v1-3b` is a 2.7B Causal Language Model focused on **Code Completion**. The model has been trained on a subset of the [Stack Dedup v1.2 dataset](https://arxiv.org/abs/2211.15533).
The training mixture includes **20 different languages**, listed here in descending order of number of tokens:
<br/>
`Markdown`, `Java`, `JavaScript`, `Python`, `TypeScript`, `PHP`, `SQL`, `JSX`, `reStructuredText`, `Rust`, `C`, `CSS`, `Go`, `C++`, `HTML`, `Vue`, `Ruby`, `Jupyter Notebook`, `R`, `Shell`
<br/>
In total, the training dataset contains 175B tokens, which were repeated over 3 epochs -- in total, `replit-code-v1-3b` has been trained on **525B** tokens (~195 tokens per parameter).
The model has been trained on the [MosaicML](https://www.mosaicml.com/) platform with 256 x A100-40GB GPUs, leveraging their latest [LLM examples repo](https://github.com/mosaicml/examples/tree/release/v0.0.4/examples/llm).
<br/>
`replit-code-v1-3b` is powered by state-of-the-art LLM techniques, such as:
[Flash Attention](https://arxiv.org/abs/2205.14135) for fast training and inference,
[AliBi positional embeddings](https://arxiv.org/abs/2108.12409) to support variable context length at inference time,
[LionW optimizer](https://arxiv.org/abs/2302.06675),
etc.
## Intended Use
Replit intends this model be used by anyone as a foundational model for application-specific fine-tuning without strict limitations on commercial use.
## Limitations
The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters, and such content may be reflected in model generated text. We recommend that users exercise reasonable caution when using in production systems. Do not use for any applications that may cause harm or distress to individuals or groups.
## License
The model checkpoint and vocabulary file are licensed under the Creative Commons license (CC BY-SA-4.0). Under the license, you must give credit to Replit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that Replit endorses you or your use.
## Contact
For questions and comments about the model, please post in the community section.
## How to Use
First of all, you need to install the latest versions of the following dependencies:
```
einops
sentencepiece
torch
transformers
```
You can then load the model as follows:
```python
from transformers import AutoModelForCausalLM
# load model
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
```
To use the optimized Triton implementation of FlashAttention on GPUs with BF16 precision, first install the following dependencies:
```
flash-attn==0.2.8
triton==2.0.0.dev20221202
```
Then, move the model to `bfloat16` and use it as follows:
```python
from transformers import AutoModelForCausalLM
# load model
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True, attn_impl='triton')
model.to(device='cuda:0', dtype=torch.bfloat16)
# forward pass
x = torch.tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
x = x.to(device='cuda:0')
y = model(x)
```
Note that `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the
[Transformers](https://huggingface.co./docs/transformers/index) library.
### Tokenizer
We have trained a custom SentencePiece Unigram tokenizer optimized with a vocabulary specifically for code of 32768 tokens.
Note that using this requires the `sentencepiece` library to be installed.
The tokenizer can be used as follows:
```python
from transformers import AutoTokenizer
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
# single input encoding + generation
x = tokenizer.encode('def hello():\n print("hello world")\n', return_tensors='pt')
y = model.generate(x)
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(generated_code)
```
Note that:
- `trust_remote_code=True` is passed to the `from_pretrained` method because ReplitLM is not a class in the [Transformers](https://huggingface.co./docs/transformers/index) library.
- `clean_up_tokenization_spaces=False` is meant to avoid removing spaces in the output, because that would affect the syntactical correctness of the generated code.
### Generation
You can generate code using the `transformers` library as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('replit/replit-code-v1-3b', trust_remote_code=True)
x = tokenizer.encode('def fibonacci(n): ', return_tensors='pt')
y = model.generate(x, max_length=100, do_sample=True, top_p=0.95, top_k=4, temperature=0.2, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
# decoding, clean_up_tokenization_spaces=False to ensure syntactical correctness
generated_code = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(generated_code)
```
Experiment with different decoding methods and parameters to get the best results for your use case.
### Post Processing
Note that as with all code generation models, post-processing of the generated code is important. In particular, the following post-processing steps are recommended:
- stop generation when the EOS token is encountered
- remove trailing whitespaces
- set `max_tokens` to a reasonable value based on your completion use case
- truncate generation to stop words such as `return`, `def`, "```", "`\n\n\n`" to avoid generating incomplete code when `max_tokens` is larger than the length of the expected generated code.
## Model Hash
5bc28ce32c6f9aec935ead7b60ea1c46 |