File size: 19,748 Bytes
ce1f658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

"""Forked from the MosaicGPT model class from the Mosaic Examples codebase of date May 1st, 2023.
Permalink: https://github.com/mosaicml/examples/blob/52cd4fef69497f225a034fcd10692f8613732d10/examples/llm/src/models/mosaic_gpt/mosaic_gpt.py
"""

"""A simple, flexible implementation of a GPT model.

Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
"""

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings

from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from typing import List, Optional, Tuple

from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape
from .gpt_blocks import GPTBlock
from .configuration_replit_lm import \
    ReplitLMConfig
from .param_init_fns import MODEL_INIT_REGISTRY
from .low_precision_layernorm import LPLayerNorm


class ReplitLM(PreTrainedModel):
    config_class = ReplitLMConfig
    base_model_prefix = 'replit_lm'

    def __init__(self, config: ReplitLMConfig):
        super().__init__(config)

        if config.attn_impl == 'flash' and config.alibi:
            raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.")

        self.attn_impl = config.attn_impl
        self.prefix_lm = config.prefix_lm
        self.attn_uses_sequence_id = config.attn_uses_sequence_id
        self.alibi = config.alibi
        self.alibi_bias_max = config.alibi_bias_max

        layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm

        # CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414)
        # both report this helping with stabilizing training
        self.embedding_fraction = config.embedding_fraction

        self.transformer = nn.ModuleDict({
            'wte':
                nn.Embedding(config.vocab_size,
                             config.d_model,
                             device=config.init_device)
        })
        if not self.alibi:
            self.transformer.update({
                'wpe':
                    nn.Embedding(config.max_seq_len,
                                 config.d_model,
                                 device=config.init_device)
            })
        self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)})
        self.transformer.update({
            'blocks':
                nn.ModuleList([
                    GPTBlock(device=config.init_device,
                                        **config.to_dict())
                    for _ in range(config.n_layers)
                ])
        })
        self.transformer.update({
            'ln_f': layernorm_class(config.d_model, device=config.init_device)
        })

        # enables scaling output logits; similar to a softmax "temperature"
        # PaLM paper uses scale 1/sqrt(config.d_model)
        self.logit_scale = None
        if config.logit_scale is not None:
            logit_scale = config.logit_scale
            if isinstance(logit_scale, str):
                if logit_scale == 'inv_sqrt_d_model':
                    logit_scale = 1 / math.sqrt(config.d_model)
                else:
                    raise ValueError(
                        f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
                    )
            self.logit_scale = logit_scale

        if config.init_device != 'meta':
            print(
                f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.'
            )
            self.apply(self.param_init_fn)

        self.is_causal = not self.prefix_lm

        # define attn mask
        self._attn_bias_initialized = False
        self.attn_bias = None
        self.attn_bias_shape = module_attn_bias_shape(
            self.attn_impl,
            config.n_heads,
            config.max_seq_len,
            self.alibi,
            prefix_lm=self.prefix_lm,
            causal=self.is_causal,
            use_sequence_id=self.attn_uses_sequence_id)

        if config.no_bias:
            for module in self.modules():
                if hasattr(module, 'bias') and isinstance(
                        module.bias, nn.Parameter):
                    if config.verbose:
                        print(f'Removing bias ({module.bias}) from {module}.')
                    module.register_parameter('bias', None)

        if config.verbose and config.verbose > 2:
            print(self)

    @torch.no_grad()
    def _attn_bias(self,
                   device,
                   dtype,
                   attention_mask: Optional[torch.ByteTensor] = None,
                   prefix_mask: Optional[torch.ByteTensor] = None,
                   sequence_id: Optional[torch.LongTensor] = None):
        if not self._attn_bias_initialized:
            if self.attn_bias_shape:
                self.attn_bias = torch.zeros(self.attn_bias_shape,
                                             device=device,
                                             dtype=dtype)
                self.attn_bias = module_attn_bias(
                    self.attn_impl,
                    self.attn_bias,
                    self.config.n_heads,
                    self.config.max_seq_len,
                    causal=self.is_causal,
                    alibi=self.alibi,
                    alibi_bias_max=self.alibi_bias_max)
            self._attn_bias_initialized = True

        # flash does not support prefix_lm and will incorporate any
        # attention_mask inside the attention module
        if self.attn_impl == 'flash':
            return self.attn_bias, attention_mask

        attn_bias = self.attn_bias

        # If using torch or triton, we incorporate the prefix_mask (if appropriate)
        if self.prefix_lm:
            assert isinstance(attn_bias, torch.Tensor)  # pyright
            assert isinstance(prefix_mask, torch.Tensor)  # pyright
            attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)

        # If using torch or triton, we incorporate sequence_id (if appropriate)
        if self.attn_uses_sequence_id and sequence_id is not None:
            assert isinstance(attn_bias, torch.Tensor)  # pyright
            attn_bias = self._apply_sequence_id(attn_bias, sequence_id)

        # If using torch or triton, we incorporate attention_mask. This will output
        # None in place of attention_mask since it will not be further needed in the
        # attention modules.
        if attention_mask is not None:
            s_k = attention_mask.shape[-1]
            if attn_bias is None:
                attn_bias = torch.zeros((1, 1, 1, s_k),
                                        device=device,
                                        dtype=dtype)
            else:
                attn_bias = attn_bias[:, :, :, -s_k:]
            if prefix_mask is not None and (attention_mask.shape !=
                                            prefix_mask.shape):
                raise ValueError(
                    f'attention_mask shape={attention_mask.shape} ' +\
                    f'and prefix_mask shape={prefix_mask.shape} are not equal.'
                )
            min_val = torch.finfo(attn_bias.dtype).min
            attn_bias = attn_bias.masked_fill(
                ~attention_mask.view(-1, 1, 1, s_k), min_val)

        return attn_bias, None

    def _apply_prefix_mask(self, attn_bias: torch.Tensor,
                           prefix_mask: torch.Tensor):
        s_k, s_q = attn_bias.shape[-2:]
        if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len):
            raise ValueError(
                'attn_bias does not match the expected shape. ' +\
                f'The last two dimensions should both be {self.config.max_length} ' +\
                f'but are {s_k} and {s_q}.'
            )
        seq_len = prefix_mask.shape[-1]
        if seq_len > self.config.max_seq_len:
            raise ValueError(
                f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
            )

        # select seq_len subset of attn mask
        attn_bias = attn_bias[..., :seq_len, :seq_len]

        # Mix the causal max and the bidirectional mask to get the full
        # allowable attention (i.e. full = not accounting for padding yet)
        causal = torch.tril(
            torch.ones((seq_len, seq_len),
                       dtype=torch.bool,
                       device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
        prefix = prefix_mask.view(-1, 1, 1, seq_len)
        cannot_attend = ~torch.logical_or(causal, prefix.bool())

        min_val = torch.finfo(attn_bias.dtype).min
        attn_bias = attn_bias.masked_fill(cannot_attend, min_val)

        return attn_bias

    def _apply_sequence_id(self, attn_bias: torch.Tensor,
                           sequence_id: torch.LongTensor):
        seq_len = sequence_id.shape[-1]
        if seq_len > self.config.max_seq_len:
            raise ValueError(
                f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}'
            )

        # select seq_len subset of attn mask
        attn_bias = attn_bias[..., :seq_len, :seq_len]

        # Restrict attention to tokens that share the same value
        # in sequence_id
        cannot_attend = torch.logical_not(
            torch.eq(sequence_id.view(-1, seq_len, 1),
                     sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
        min_val = torch.finfo(attn_bias.dtype).min
        attn_bias = attn_bias.masked_fill(cannot_attend, min_val)

        return attn_bias

    def forward(
            self,
            input_ids: torch.LongTensor,
            past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
            attention_mask: Optional[torch.ByteTensor] = None,
            prefix_mask: Optional[torch.ByteTensor] = None,
            sequence_id: Optional[torch.LongTensor] = None,
            return_dict: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            use_cache: Optional[bool] = None):
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        # These args are passed in by keyword in huggingface's generate function
        # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206
        # but have not yet been fully implemented in ReplitLM
        if not return_dict:
            raise NotImplementedError(
                'return_dict False is not implemented yet for ReplitLM')
        if output_attentions:
            raise NotImplementedError(
                'output_attentions is not implemented yet for ReplitLM')

        if attention_mask is not None and attention_mask[:, 0].sum(
        ) != attention_mask.shape[0] and self.training:
            raise NotImplementedError(
                'ReplitLM does not support training with left padding.')

        if self.prefix_lm and prefix_mask is None:
            raise ValueError(
                'prefix_mask is a required argument when ReplitLM is configured with prefix_lm=True.'
            )

        if self.training:
            if self.attn_uses_sequence_id and sequence_id is None:
                raise ValueError(
                    'sequence_id is a required argument when ReplitLM is configured with attn_uses_sequence_id=True ' +\
                    'and the model is in train mode.'
                )
            elif (self.attn_uses_sequence_id is False) and (sequence_id
                                                            is not None):
                warnings.warn(
                    'ReplitLM received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\
                    'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.'
                )

        S = input_ids.size(1)

        assert (
            S <= self.config.max_seq_len
        ), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'

        tok_emb = self.transformer.wte(input_ids)  # type: ignore
        if self.alibi:
            x = tok_emb
        else:
            past_position = 0
            if past_key_values is not None:
                if len(past_key_values) != self.config.n_layers:
                    raise ValueError(
                        f'past_key_values must provide a past_key_value for each attention ' +\
                        f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).'
                    )
                # get the key tensor whose spec should be (batch, seq, dim), and
                # collect the `seq`, so that the position embedding is shifted
                past_position = past_key_values[0][0].size(1)

            if S + past_position > self.config.max_seq_len:
                raise ValueError(
                    f'Cannot forward input with past sequence length {past_position} and current sequence length '
                    f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.'
                )
            pos = torch.arange(past_position,
                               S + past_position,
                               dtype=torch.long,
                               device=input_ids.device).unsqueeze(0)
            if attention_mask is not None:
                # adjust the position indices to account for padding tokens
                pos = torch.clamp(pos - torch.cumsum(
                    (~attention_mask).to(torch.int32), dim=1)[:,
                                                              past_position:],
                                  min=0)

            pos_emb = self.transformer.wpe(pos)  # type: ignore
            x = tok_emb + pos_emb

        if self.embedding_fraction == 1:
            x = self.transformer.emb_drop(x)  # type: ignore
        else:
            # this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414
            x_shrunk = (x * self.embedding_fraction) + (
                x.detach() * (1 - self.embedding_fraction))
            assert isinstance(self.transformer.emb_drop, nn.Module)  # pyright
            x = self.transformer.emb_drop(x_shrunk)

        attn_bias, attention_mask = self._attn_bias(
            device=x.device,
            dtype=x.dtype,
            attention_mask=attention_mask,
            prefix_mask=prefix_mask,
            sequence_id=sequence_id)

        # initialize the past key values cache if it should be used
        if use_cache and past_key_values is None:
            past_key_values = [() for _ in range(self.config.n_layers)
                              ]  # type: ignore

        all_hidden_states = () if output_hidden_states else None
        for b_idx, block in enumerate(self.transformer.blocks):  # type: ignore
            if output_hidden_states:
                assert all_hidden_states is not None  # pyright
                all_hidden_states = all_hidden_states + (x,)
            past_key_value = past_key_values[
                b_idx] if past_key_values is not None else None
            x, past_key_value = block(x,
                                      past_key_value=past_key_value,
                                      attn_bias=attn_bias,
                                      attention_mask=attention_mask,
                                      is_causal=self.is_causal)
            if past_key_values is not None:
                past_key_values[b_idx] = past_key_value

        x = self.transformer.ln_f(x)  # type: ignore

        # output embedding weight tied to input embedding
        assert isinstance(self.transformer.wte, nn.Module)  # pyright
        assert isinstance(self.transformer.wte.weight, torch.Tensor)  # pyright
        logits = F.linear(x, self.transformer.wte.weight, None)

        if self.logit_scale is not None:
            if self.logit_scale == 0:
                warnings.warn(
                    f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.'
                )
            logits *= self.logit_scale

        return CausalLMOutputWithPast(logits=logits,
                                      past_key_values=past_key_values,
                                      hidden_states=all_hidden_states)

    # Param Initialization, needed for device='meta' fast initialization
    def param_init_fn(self, module):
        init_fn_name = self.config.param_init_fn
        if self.config.verbose > 1:
            warnings.warn(f'Using {init_fn_name} initialization.')
        MODEL_INIT_REGISTRY[init_fn_name](module=module,
                                          **self.config.to_dict())

    # FSDP Wrap function
    def fsdp_wrap_fn(self, module):
        return isinstance(module, GPTBlock)

    # Activation Checkpointing
    def activation_checkpointing_fn(self, module):
        return isinstance(module, GPTBlock)

    def prepare_inputs_for_generation(self,
                                      input_ids,
                                      past_key_values=None,
                                      inputs_embeds=None,
                                      **kwargs):
        if inputs_embeds is not None:
            raise NotImplementedError(
                'inputs_embeds is not implemented for ReplitLM yet')

        attention_mask = kwargs['attention_mask'].bool()
        if attention_mask[:, -1].sum() != attention_mask.shape[0]:
            raise NotImplementedError(
                'ReplitLM does not support generation with right padding.')

        if self.attn_uses_sequence_id and self.training:
            sequence_id = torch.zeros_like(input_ids[:1])
        else:
            sequence_id = None

        if past_key_values is not None:
            input_ids = input_ids[:, -1].unsqueeze(-1)

        if self.prefix_lm:
            # Leverage a convenience of sequential generation!
            prefix_mask = torch.ones_like(attention_mask)
            # This requires that we're using the cache
            if kwargs.get('use_cache') == False:
                raise NotImplementedError(
                    'ReplitLM with prefix_lm=True does not support use_cache=False.'
                )
        else:
            prefix_mask = None

        return {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'prefix_mask': prefix_mask,
            'sequence_id': sequence_id,
            'past_key_values': past_key_values,
            'use_cache': kwargs.get('use_cache', True),
        }

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        """Used by HuggingFace generate when using beam search with kv-caching.

        See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
        for an example in transformers.
        """
        reordered_past = []
        for layer_past in past_key_values:
            reordered_past += [
                tuple(
                    past_state.index_select(0, beam_idx)
                    for past_state in layer_past)
            ]
        return reordered_past