hidehisa-arai commited on
Commit
82f1345
1 Parent(s): 3a3be99
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # recruit-jp/japanese-clip-vit-b-32-roberta-base
6
+
7
+ ## 使い方
8
+
9
+ ```python
10
+ import io
11
+ import requests
12
+ from PIL import Image
13
+
14
+ import torch
15
+ import torchvision
16
+ from transformers import AutoTokenizer, AutoModel
17
+
18
+ model_name = "recruit-jp/japanese-clip-vit-b-32-roberta-base"
19
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
20
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
21
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(device)
22
+
23
+ def _convert_to_rgb(image):
24
+ return image.convert('RGB')
25
+
26
+
27
+ preprocess = torchvision.transforms.Compose([
28
+ torchvision.transforms.Resize(size=224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC, max_size=None),
29
+ torchvision.transforms.CenterCrop(size=(224, 224)),
30
+ _convert_to_rgb,
31
+ torchvision.transforms.ToTensor(),
32
+ torchvision.transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
33
+ ])
34
+
35
+
36
+ def tokenize(tokenizer, texts):
37
+ texts = ["[CLS]" + text for text in texts]
38
+ encodings = [
39
+ tokenizer(text, max_length=77, padding="max_length", truncation=True, add_special_tokens=False)["input_ids"]
40
+ for text in texts
41
+ ]
42
+ return torch.LongTensor(encodings)
43
+
44
+ # Run!
45
+ image = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content))
46
+ image = preprocess(image).unsqueeze(0).to(device)
47
+ text = tokenize(tokenizer, texts=["犬", "猫", "象"]).to(device)
48
+
49
+ with torch.inference_mode():
50
+ image_features = model.get_image_features(image)
51
+ image_features /= image_features.norm(dim=-1, keepdim=True)
52
+
53
+ text_features = model.get_text_features(input_ids=text)
54
+ text_features /= text_features.norm(dim=-1, keepdim=True)
55
+
56
+ probs = image_features @ text_features.T
57
+
58
+ print("Label probs:", probs.cpu().numpy()[0])
59
+ ```